← Back

Nanoscale Imaging

Topic spotlight
TopicWorld Wide

nanoscale imaging

Discover seminars, jobs, and research tagged with nanoscale imaging across World Wide.
1 curated item1 Seminar
Updated about 5 years ago
1 items · nanoscale imaging
1 result
SeminarNeuroscienceRecording

Tools for Analyzing and Repairing the Brain. (Simultaneous translation to Spanish)

Ed Boyden
Y. Eva Tan Professor in Neurotechnology at MIT
Oct 11, 2020

To enable the understanding and repair of complex biological systems, such as the brain, we are creating novel optical tools that enable molecular-resolution maps of such systems, as well as technologies for observing and controlling high-speed physiological dynamics in such systems. First, we have developed a method for imaging specimens with nanoscale precision, by embedding them in a swellable polymer, homogenizing their mechanical properties, and exposing them to water – which causes them to expand manyfold isotropically. This method, which we call expansion microscopy (ExM), enables ordinary microscopes to do nanoscale imaging, in a multiplexed fashion – important, for example, for brain mapping. Second, we have developed a set of genetically-encoded reagents, known as optogenetic tools, that when expressed in specific neurons, enable their electrical activities to be precisely driven or silenced in response to millisecond timescale pulses of light. Finally, we are designing, and evolving, novel reagents, such as fluorescent voltage indicators and somatically targeted calcium indicators, to enable the imaging of fast physiological processes in 3-D with millisecond precision. In this way we aim to enable the systematic mapping, control, and dynamical observation of complex biological systems like the brain. The talk will be simultaneously interpreted English-Spanish) by the Interpreter, Mg. Lourdes Martino. Para permitir la comprensión y reparación de sistemas biológicos complejos, como el cerebro, estamos creando herramientas ópticas novedosas que permiten crear mapas de resolución molecular de dichos sistemas, así como tecnologías para observar y controlar la dinámica fisiológica de alta velocidad en dichos sistemas. Primero, hemos desarrollado un método para obtener imágenes de muestras con precisión a nanoescala, incrustándolas en un polímero hinchable, homogeneizando sus propiedades mecánicas y exponiéndolas al agua, lo que hace que se expandan muchas veces isotrópicamente. Este método, que llamamos microscopía de expansión (ExM), permite que los microscopios ordinarios obtengan imágenes a nanoescala, de forma multiplexada, lo que es importante, por ejemplo, para el mapeo cerebral. En segundo lugar, hemos desarrollado un conjunto de reactivos codificados genéticamente, conocidos como herramientas optogenéticas, que cuando se expresan en neuronas específicas, permiten que sus actividades eléctricas sean activadas o silenciadas con precisión en respuesta a pulsos de luz en una escala de tiempo de milisegundos. Finalmente, estamos diseñando y desarrollando reactivos novedosos, como indicadores de voltaje fluorescentes e indicadores de calcio dirigidos somáticamente, para permitir la obtención de imágenes de procesos fisiológicos rápidos en 3-D con precisión de milisegundos. De esta manera, nuestro objetivo es permitir el mapeo sistemático, el control y la observación dinámica de sistemas biológicos complejos como el cerebro. La conferencia será traducida simultáneamente al español por la intérprete Mg. Lourdes Martino.