← Back

Neocortical Circuits

Topic spotlight
TopicWorld Wide

neocortical circuits

Discover seminars, jobs, and research tagged with neocortical circuits across World Wide.
3 curated items2 Seminars1 ePoster
Updated over 5 years ago
3 items · neocortical circuits
3 results
SeminarNeuroscience

Autism-Associated Shank3 Is Essential for Homeostatic Compensation in Rodent Visual Cortex

Gina Turrigiano
Brandeis University
Jul 20, 2020

Neocortical networks must generate and maintain stable activity patterns despite perturbations induced by learning and experience- dependent plasticity. There is abundant theoretical and experimental evidence that network stability is achieved through homeostatic plasticity mechanisms that adjust synaptic and neuronal properties to stabilize some measure of average activity, and this process has been extensively studied in primary visual cortex (V1), where chronic visual deprivation induces an initial drop in activity and ensemble average firing rates (FRs), but over time activity is restored to baseline despite continued deprivation. Here I discuss recent work from the lab in which we followed this FR homeostasis in individual V1 neurons in freely behaving animals during a prolonged visual deprivation/eye-reopening paradigm. We find that - when FRs are perturbed by manipulating sensory experience - over time they return precisely to a cell-autonomous set-point. Finally, we find that homeostatic plasticity is perturbed in a mouse model of Autism spectrum disorder, and this results in a breakdown of FRH within V1. These data suggest that loss of homeostatic plasticity is one primary cause of excitation/inhibition imbalances in ASD models. Together these studies illuminate the role of stabilizing plasticity mechanisms in the ability of neocortical circuits to recover robust function following challenges to their excitability.

SeminarNeuroscienceRecording

Fate and freedom in developing neocortical circuits

Denis Jabaudon
University of Geneva
Apr 22, 2020

During brain development, neurons are born in specialized niches and migrate to target regions where they assemble to form the circuits that underlie mammalian behaviour. During their journey, neurons follow cell-intrinsic, genetic programs transmitted by their mother cells but also environmental cues, which together drive their maturation. Here, focusing on the neocortex, I will discuss recent findings from our laboratory in which we untangle and manipulate the programs at play in progenitors and their daughter neurons to better understand the emergence of cellular diversity in the developing brain.

ePoster

Harmonic oscillator networks (HORNs) and the functional role of oscillatory dynamics in neocortical circuits

Felix Effenberger, Pedro Carvalho, Dubinin Igor, Wolf Singer

FENS Forum 2024