← Back

Nervous System

Topic spotlight
TopicWorld Wide

nervous system

Discover seminars, jobs, and research tagged with nervous system across World Wide.
80 curated items60 Seminars20 ePosters
Updated in 12 days
80 items · nervous system
80 results
SeminarNeuroscience

sensorimotor control, mouvement, touch, EEG

Marieva Vlachou
Institut des Sciences du Mouvement Etienne Jules Marey, Aix-Marseille Université/CNRS, France
Dec 18, 2025

Traditionally, touch is associated with exteroception and is rarely considered a relevant sensory cue for controlling movements in space, unlike vision. We developed a technique to isolate and measure tactile involvement in controlling sliding finger movements over a surface. Young adults traced a 2D shape with their index finger under direct or mirror-reversed visual feedback to create a conflict between visual and somatosensory inputs. In this context, increased reliance on somatosensory input compromises movement accuracy. Based on the hypothesis that tactile cues contribute to guiding hand movements when in contact with a surface, we predicted poorer performance when the participants traced with their bare finger compared to when their tactile sensation was dampened by a smooth, rigid finger splint. The results supported this prediction. EEG source analyses revealed smaller current in the source-localized somatosensory cortex during sensory conflict when the finger directly touched the surface. This finding supports the hypothesis that, in response to mirror-reversed visual feedback, the central nervous system selectively gated task-irrelevant somatosensory inputs, thereby mitigating, though not entirely resolving, the visuo-somatosensory conflict. Together, our results emphasize touch’s involvement in movement control over a surface, challenging the notion that vision predominantly governs goal-directed hand or finger movements.

SeminarNeuroscience

NF1 exon 51 alternative splicing: functional implications in Central Nervous System (CNS) Cells

Charoula Peta
Biomedical research Foundation of the Academy of Athens
Oct 21, 2025
SeminarNeuroscience

How the presynapse forms and functions”

Volker Haucke
Department of Molecular Pharmacology & Cell Biology, Leibniz Institute, Berlin, Germany
Aug 27, 2025

Nervous system function relies on the polarized architecture of neurons, established by directional transport of pre- and postsynaptic cargoes. While delivery of postsynaptic components depends on the secretory pathway, the identity of the membrane compartment(s) that supply presynaptic active zone (AZ) and synaptic vesicle (SV) proteins is largely unknown. I will discuss our recent advances in our understanding of how key components of the presynaptic machinery for neurotransmitter release are transported and assembled focussing on our studies in genome-engineered human induced pluripotent stem cell-derived neurons. Specifically, I will focus on the composition and cell biological identity of the axonal transport vesicles that shuttle key components of neurotransmission to nascent synapses and on machinery for axonal transport and its control by signaling lipids. Our studies identify a crucial mechanism mediating the delivery of SV and active zone proteins to developing synapses and reveal connections to neurological disorders. In the second part of my talk, I will discuss how exocytosis and endocytosis are coupled to maintain presynaptic membrane homeostasis. I will present unpublished data regarding the role of membrane tension in the coupling of exocytosis and endocytosis at synapses. We have identified an endocytic BAR domain protein that is capable of sensing alterations in membrane tension caused by the exocytotic fusion of SVs to initiate compensatory endocytosis to restore plasma membrane area. Interference with this mechanism results in defects in the coupling of presynaptic exocytosis and SV recycling at human synapses.

SeminarNeuroscience

Gene regulation networks in nervous system cancers: identification of novel drug targets

Politis Panagiotis
Center for Basic Research, Biomedical Research Foundation of the Academy of Athens
Jun 19, 2025
SeminarNeuroscience

Constructing and deconstructing the human nervous system to study development and disease

Sergiu Pasca
Stanford University
Mar 9, 2025
SeminarNeuroscience

CNS Control of Peripheral Mitochondrial Form and Function: Mitokines

Andy Dillin
University of California, Berkeley
Jan 27, 2025

My laboratory has made an intriguing discovery that mitochondrial stress in one tissue can be communicated to distal tissues. We find that mitochondrial stress in the nervous system triggers the production of entities known as mitokines. These mitokines are discharged from the nervous system, orchestrating a response in peripheral tissues that extends the lifespan of C. elegans. The revelation came as a surprise, given the prevalent belief that cell autonomous mechanisms would underlie the relationship between mitochondrial function and aging. It was also surprising given the prevailing dogma that mitochondrial function must be increased, not decreased, to improve health and longevity. Our work also underscores the fact that mitochondria, which originated as a microbial entity and later evolved into an intracellular symbiont, have retained their capacity for intercommunication, now facilitated by signals from the nervous system. We hypothesize that this communication has evolved as a mechanism to reduce infection from pathogens.

SeminarNeuroscience

Neural mechanisms governing the learning and execution of avoidance behavior

Mario Penzo
National Institute of Mental Health, Bethesda, USA
Jun 18, 2024

The nervous system orchestrates adaptive behaviors by intricately coordinating responses to internal cues and environmental stimuli. This involves integrating sensory input, managing competing motivational states, and drawing on past experiences to anticipate future outcomes. While traditional models attribute this complexity to interactions between the mesocorticolimbic system and hypothalamic centers, the specific nodes of integration have remained elusive. Recent research, including our own, sheds light on the midline thalamus's overlooked role in this process. We propose that the midline thalamus integrates internal states with memory and emotional signals to guide adaptive behaviors. Our investigations into midline thalamic neuronal circuits have provided crucial insights into the neural mechanisms behind flexibility and adaptability. Understanding these processes is essential for deciphering human behavior and conditions marked by impaired motivation and emotional processing. Our research aims to contribute to this understanding, paving the way for targeted interventions and therapies to address such impairments.

SeminarNeuroscience

Of glia and macrophages, signaling hubs in development and homeostasis

Angela Giangrande
IGBMC, CNRS UMR 7104 - Inserm U 1258, Illkirch, France
Feb 20, 2024

We are interested in the biology of macrophages, which represent the first line of defense against pathogens. In Drosophila, the embryonic hemocytes arise from the mesoderm whereas glial cells arise from multipotent precursors in the neurogenic region. These cell types represent, respectively, the macrophages located outside and within the nervous system (similar to vertebrate microglia). Thus, despite their different origin, hemocytes and glia display common functions. In addition, both cell types express the Glide/Gcm transcription factor, which plays an evolutionarily conserved role as an anti-inflammatory factor. Moreover, embryonic hemocytes play an evolutionarily conserved and fundamental role in development. The ability to migrate and to contact different tissues/organs most likely allow macrophages to function as signaling hubs. The function of macrophages beyond the recognition of the non-self calls for revisiting the biology of these heterogeneous and plastic cells in physiological and pathological conditions across evolution.

SeminarNeuroscience

Astrocyte reprogramming / activation and brain homeostasis

Thomaidou Dimitra
Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
Dec 12, 2023

Astrocytes are multifunctional glial cells, implicated in neurogenesis and synaptogenesis, supporting and fine-tuning neuronal activity and maintaining brain homeostasis by controlling blood-brain barrier permeability. During the last years a number of studies have shown that astrocytes can also be converted into neurons if they force-express neurogenic transcription factors or miRNAs. Direct astrocytic reprogramming to induced-neurons (iNs) is a powerful approach for manipulating cell fate, as it takes advantage of the intrinsic neural stem cell (NSC) potential of brain resident reactive astrocytes. To this end, astrocytic cell fate conversion to iNs has been well-established in vitro and in vivo using combinations of transcription factors (TFs) or chemical cocktails. Challenging the expression of lineage-specific TFs is accompanied by changes in the expression of miRNAs, that post-transcriptionally modulate high numbers of neurogenesis-promoting factors and have therefore been introduced, supplementary or alternatively to TFs, to instruct direct neuronal reprogramming. The neurogenic miRNA miR-124 has been employed in direct reprogramming protocols supplementary to neurogenic TFs and other miRNAs to enhance direct neurogenic conversion by suppressing multiple non-neuronal targets. In our group we aimed to investigate whether miR-124 is sufficient to drive direct reprogramming of astrocytes to induced-neurons (iNs) on its own both in vitro and in vivo and elucidate its independent mechanism of reprogramming action. Our in vitro data indicate that miR-124 is a potent driver of the reprogramming switch of astrocytes towards an immature neuronal fate. Elucidation of the molecular pathways being triggered by miR-124 by RNA-seq analysis revealed that miR-124 is sufficient to instruct reprogramming of cortical astrocytes to immature induced-neurons (iNs) in vitro by down-regulating genes with important regulatory roles in astrocytic function. Among these, the RNA binding protein Zfp36l1, implicated in ARE-mediated mRNA decay, was found to be a direct target of miR-124, that be its turn targets neuronal-specific proteins participating in cortical development, which get de-repressed in miR-124-iNs. Furthermore, miR-124 is potent to guide direct neuronal reprogramming of reactive astrocytes to iNs of cortical identity following cortical trauma, a novel finding confirming its robust reprogramming action within the cortical microenvironment under neuroinflammatory conditions. In parallel to their reprogramming properties, astrocytes also participate in the maintenance of blood-brain barrier integrity, which ensures the physiological functioning of the central nervous system and gets affected contributing to the pathology of several neurodegenerative diseases. To study in real time the dynamic physical interactions of astrocytes with brain vasculature under homeostatic and pathological conditions, we performed 2-photon brain intravital imaging in a mouse model of systemic neuroinflammation, known to trigger astrogliosis and microgliosis and to evoke changes in astrocytic contact with brain vasculature. Our in vivo findings indicate that following neuroinflammation the endfeet of activated perivascular astrocytes lose their close proximity and physiological cross-talk with vasculature, however this event is at compensated by the cross-talk of astrocytes with activated microglia, safeguarding blood vessel coverage and maintenance of blood-brain integrity.

SeminarNeuroscienceRecording

Brain network communication: concepts, models and applications

Caio Seguin
Indiana University
Aug 23, 2023

Understanding communication and information processing in nervous systems is a central goal of neuroscience. Over the past two decades, advances in connectomics and network neuroscience have opened new avenues for investigating polysynaptic communication in complex brain networks. Recent work has brought into question the mainstay assumption that connectome signalling occurs exclusively via shortest paths, resulting in a sprawling constellation of alternative network communication models. This Review surveys the latest developments in models of brain network communication. We begin by drawing a conceptual link between the mathematics of graph theory and biological aspects of neural signalling such as transmission delays and metabolic cost. We organize key network communication models and measures into a taxonomy, aimed at helping researchers navigate the growing number of concepts and methods in the literature. The taxonomy highlights the pros, cons and interpretations of different conceptualizations of connectome signalling. We showcase the utility of network communication models as a flexible, interpretable and tractable framework to study brain function by reviewing prominent applications in basic, cognitive and clinical neurosciences. Finally, we provide recommendations to guide the future development, application and validation of network communication models.

SeminarArtificial IntelligenceRecording

Diverse applications of artificial intelligence and mathematical approaches in ophthalmology

Tiarnán Keenan
National Eye Institute (NEI)
Jun 5, 2023

Ophthalmology is ideally placed to benefit from recent advances in artificial intelligence. It is a highly image-based specialty and provides unique access to the microvascular circulation and the central nervous system. This talk will demonstrate diverse applications of machine learning and deep learning techniques in ophthalmology, including in age-related macular degeneration (AMD), the leading cause of blindness in industrialized countries, and cataract, the leading cause of blindness worldwide. This will include deep learning approaches to automated diagnosis, quantitative severity classification, and prognostic prediction of disease progression, both from images alone and accompanied by demographic and genetic information. The approaches discussed will include deep feature extraction, label transfer, and multi-modal, multi-task training. Cluster analysis, an unsupervised machine learning approach to data classification, will be demonstrated by its application to geographic atrophy in AMD, including exploration of genotype-phenotype relationships. Finally, mediation analysis will be discussed, with the aim of dissecting complex relationships between AMD disease features, genotype, and progression.

SeminarNeuroscienceRecording

Microglia regulate central nervous system myelin growth and integrity

Niamh McNamahara
U of Edinburgh / Netherlands Institute of Neuroscience
May 15, 2023
SeminarNeuroscienceRecording

Feedback control in the nervous system: from cells and circuits to behaviour

Timothy O'Leary
Department of Engineering, University of Cambridge
May 15, 2023

The nervous system is fundamentally a closed loop control device: the output of actions continually influences the internal state and subsequent actions. This is true at the single cell and even the molecular level, where “actions” take the form of signals that are fed back to achieve a variety of functions, including homeostasis, excitability and various kinds of multistability that allow switching and storage of memory. It is also true at the behavioural level, where an animal’s motor actions directly influence sensory input on short timescales, and higher level information about goals and intended actions are continually updated on the basis of current and past actions. Studying the brain in a closed loop setting requires a multidisciplinary approach, leveraging engineering and theory as well as advances in measuring and manipulating the nervous system. I will describe our recent attempts to achieve this fusion of approaches at multiple levels in the nervous system, from synaptic signalling to closed loop brain machine interfaces.

SeminarNeuroscience

The embodied brain

Pierre-Marie Lledo
Institut Pasteur
May 8, 2023

Understanding the brain is not only intrinsically fascinating, but also highly relevant to increase our well-being since our brain exhibits a power over the body that makes it capable both of provoking illness or facilitating the healing process. Bearing in mind this dark force, brain sciences have undergone and will undergo an important revolution, redefining its boundaries beyond the cranial cavity. During this presentation, we will discuss about the communication between the brain and other systems that shapes how we feel the external word and how we think. We are starting to unravel how our organs talk to the brain and how the brain talks back. That two-way communication encompasses a complex, body-wide system of nerves, hormones and other signals that will be discussed. This presentation aims at challenging a long history of thinking of bodily regulation as separate from "higher" mental processes. Four centuries ago, René Descartes famously conceptualized the mind as being separate from the body, it is time now to embody our mind.

SeminarNeuroscience

Dynamic endocrine modulation of the nervous system

Emily Jabocs
US Santa Barbara Neuroscience
Apr 17, 2023

Sex hormones are powerful neuromodulators of learning and memory. In rodents and nonhuman primates estrogen and progesterone influence the central nervous system across a range of spatiotemporal scales. Yet, their influence on the structural and functional architecture of the human brain is largely unknown. Here, I highlight findings from a series of dense-sampling neuroimaging studies from my laboratory designed to probe the dynamic interplay between the nervous and endocrine systems. Individuals underwent brain imaging and venipuncture every 12-24 hours for 30 consecutive days. These procedures were carried out under freely cycling conditions and again under a pharmacological regimen that chronically suppresses sex hormone production. First, resting state fMRI evidence suggests that transient increases in estrogen drive robust increases in functional connectivity across the brain. Time-lagged methods from dynamical systems analysis further reveals that these transient changes in estrogen enhance within-network integration (i.e. global efficiency) in several large-scale brain networks, particularly Default Mode and Dorsal Attention Networks. Next, using high-resolution hippocampal subfield imaging, we found that intrinsic hormone fluctuations and exogenous hormone manipulations can rapidly and dynamically shape medial temporal lobe morphology. Together, these findings suggest that neuroendocrine factors influence the brain over short and protracted timescales.

SeminarNeuroscience

Neuron-glial interactions in health and disease: from cognition to cancer

Michelle Monje
Stanford Medicine
Mar 13, 2023

In the central nervous system, neuronal activity is a critical regulator of development and plasticity. Activity-dependent proliferation of healthy glial progenitors, oligodendrocyte precursor cells (OPCs), and the consequent generation of new oligodendrocytes contributes to adaptive myelination. This plasticity of myelin tunes neural circuit function and contributes to healthy cognition. The robust mitogenic effect of neuronal activity on normal oligodendroglial precursor cells, a putative cellular origin for many forms of glioma, suggests that dysregulated or “hijacked” mechanisms of myelin plasticity might similarly promote malignant cell proliferation in this devastating group of brain cancers. Indeed, neuronal activity promotes progression of both high-grade and low-grade glioma subtypes in preclinical models. Crucial mechanisms mediating activity-regulated glioma growth include paracrine secretion of BDNF and the synaptic protein neuroligin-3 (NLGN3). NLGN3 induces multiple oncogenic signaling pathways in the cancer cell, and also promotes glutamatergic synapse formation between neurons and glioma cells. Glioma cells integrate into neural circuits synaptically through neuron-to-glioma synapses, and electrically through potassium-evoked currents that are amplified through gap-junctional coupling between tumor cells This synaptic and electrical integration of glioma into neural circuits is central to tumor progression in preclinical models. Thus, neuron-glial interactions not only modulate neural circuit structure and function in the healthy brain, but paracrine and synaptic neuron-glioma interactions also play important roles in the pathogenesis of glial cancers. The mechanistic parallels between normal and malignant neuron-glial interactions underscores the extent to which mechanisms of neurodevelopment and plasticity are subverted by malignant gliomas, and the importance of understanding the neuroscience of cancer.

SeminarNeuroscience

The embodied brain

Pierre-Marie Lledo
Institut Pasteur
Nov 28, 2022

Understanding the brain is not only intrinsically fascinating, but also highly relevant to increase our well-being since our brain exhibits a power over the body that makes it capable both of provoking illness or facilitating the healing process. Bearing in mind this dark force, brain sciences have undergone and will undergo an important revolution, redefining its boundaries beyond the cranial cavity. During this presentation, we will discuss about the communication between the brain and other systems that shapes how we feel the external word and how we think. We are starting to unravel how our organs talk to the brain and how the brain talks back. That two-way communication encompasses a complex, body-wide system of nerves, hormones and other signals that will be discussed. This presentation aims at challenging a long history of thinking of bodily regulation as separate from "higher" mental processes. Four centuries ago, René Descartes famously conceptualized the mind as being separate from the body, it is time now to embody our mind.

SeminarNeuroscience

Modern Approaches to Behavioural Analysis

Alexander Mathis
EPFL, Switzerland
Nov 20, 2022

The goal of neuroscience is to understand how the nervous system controls behaviour, not only in the simplified environments of the lab, but also in the natural environments for which nervous systems evolved. In pursuing this goal, neuroscience research is supported by an ever-larger toolbox, ranging from optogenetics to connectomics. However, often these tools are coupled with reductionist approaches for linking nervous systems and behaviour. This course will introduce advanced techniques for measuring and analysing behaviour, as well as three fundamental principles as necessary to understanding biological behaviour: (1) morphology and environment; (2) action-perception closed loops and purpose; and (3) individuality and historical contingencies [1]. [1] Gomez-Marin, A., & Ghazanfar, A. A. (2019). The life of behavior. Neuron, 104(1), 25-36

SeminarNeuroscience

NEW TREATMENTS FOR PAIN: Unmet needs and how to meet them

Multiple speakers
Nov 8, 2022

“Of pain you could wish only one thing: that it should stop. Nothing in the world was so bad as physical pain. In the face of pain there are no heroes.- George Orwell, ‘1984’ " "Neuroscience has revealed the secrets of the brain and nervous system to an extent that was beyond the realm of imagination just 10-20 years ago, let alone in 1949 when Orwell wrote his prophetic novel. Understanding pain, however, presents a unique challenge to academia, industry and medicine, being both a measurable physiological process as well as deeply personal and subjective. Given the millions of people who suffer from pain every day, wishing only, “that it should stop”, the need to find more effective treatments cannot be understated." "‘New treatments for pain’ will bring together approximately 120 people from the commercial, academic, and not-for-profit sectors to share current knowledge, identify future directions, and enable collaboration, providing delegates with meaningful and practical ways to accelerate their own work into developing treatments for pain.

SeminarNeuroscience

Development and evolution of neuronal connectivity

Alain Chédotal
Vision Institute, Paris, France
Sep 27, 2022

In most animal species including humans, commissural axons connect neurons on the left and right side of the nervous system. In humans, abnormal axon midline crossing during development causes a whole range of neurological disorders ranging from congenital mirror movements, horizontal gaze palsy, scoliosis or binocular vision deficits. The mechanisms which guide axons across the CNS midline were thought to be evolutionary conserved but our recent results suggesting that they differ across vertebrates.  I will discuss the evolution of visual projection laterality during vertebrate evolution.  In most vertebrates, camera-style eyes contain retinal ganglion cell (RGC) neurons projecting to visual centers on both sides of the brain. However, in fish, RGCs are thought to only innervate the contralateral side. Using 3D imaging and tissue clearing we found that bilateral visual projections exist in non-teleost fishes. We also found that the developmental program specifying visual system laterality differs between fishes and mammals. We are currently using various strategies to discover genes controlling the development of visual projections. I will also present ongoing work using 3D imaging techniques to study the development of the visual system in human embryo.

SeminarNeuroscience

Don't forget the gametes: Neurodevelopmental pathogenesis starts in the sperm and egg

Jill Escher
Jill Escher is founder of the Escher Fund for Autism, which funds research on non-genetic inheritance, as well as autism-related programs. She is a member of the governing council of the Environmental Mutagenesis and Genomics Society, where she is past chair of the Germ Cell and Heritable Effects special interest group. She also serves as president of the National Council on Severe Autism and past president of Autism Society San Francisco Bay Area. A former lawyer, she and her husband are the pa
Jul 5, 2022

Proper development of the nervous system depends not only on the inherited DNA sequence, but also on proper regulation of gene expression, as controlled in part by epigenetic mechanisms present in the parental gametes. In this presentation an internationally recognized research advocate explains why researchers concerned about the origins of increasingly prevalent neurodevelopmental disorders such as autism and attention deficit hyperactivity disorder should look beyond genetics in probing the origins of dysregulated transcription of brain-related genes. The culprit for a subset of cases, she contends, may lie in the exposure history of the parents, and thus their germ cells. To illustrate how environmentally informed, nongenetic dysfunction may occur, she focuses on the example of parents' histories of exposure to common agents of modern inhalational anesthesia, a highly toxic exposure that in mammalian models has been seen to induce heritable neurodevelopmental abnormality in offspring born of exposed germline.

SeminarNeuroscience

Pro-regenerative functions of microglia in demyelinating diseases

Mikael Simons
Institute of Neuronal Cell Biology, German Center for Neurodegenerative Diseases, Technical University Munich, Germany
Jun 13, 2022

Our goal is to understand why myelin repair fails in multiple sclerosis and to develop regenerative medicines for the nervous system. A central obstacle for progress in this area has been the complex biology underlying the response to CNS injury. Acute CNS damage is followed by a multicellular response that encompasses different cell types and spans different scales. Currently, we do not understand which factors determines lesion recovery. Failure of inflammation to resolve is a key underlying reason of poor regeneration, and one focus is therefore on the biology of microglia during de- and remyelination, and their cross talk to other cells, in particular oligodendrocytes and the progenitor cells. In addition, we are exploring the link between lipid metabolism and inflammation, and its role in the regulation of regeneration. I will report about our recent progress in our understanding of how microglia promote regeneration in the CNS.

SeminarNeuroscienceRecording

Reprogramming the nociceptive circuit topology reshapes sexual behavior in C. elegans

Vladyslava Pechuk
Oren lab, Weizmann Institute of Science
Jun 7, 2022

In sexually reproducing species, males and females respond to environmental sensory cues and transform the input into sexually dimorphic traits. Yet, how sexually dimorphic behavior is encoded in the nervous system is poorly understood. We characterize the sexually dimorphic nociceptive behavior in C. elegans – hermaphrodites present a lower pain threshold than males in response to aversive stimuli, and study the underlying neuronal circuits, which are composed of the same neurons that are wired differently. By imaging receptor expression, calcium responses and glutamate secretion, we show that sensory transduction is similar in the two sexes, and therefore explore how downstream network topology shapes dimorphic behavior. We generated a computational model that replicates the observed dimorphic behavior, and used this model to predict simple network rewirings that would switch the behavior between the sexes. We then showed experimentally, using genetic manipulations, artificial gap junctions, automated tracking and optogenetics, that these subtle changes to male connectivity result in hermaphrodite-like aversive behavior in-vivo, while hermaphrodite behavior was more robust to perturbations. Strikingly, when presented with aversive cues, rewired males were compromised in finding mating partners, suggesting that the network topology that enables efficient avoidance of noxious cues would have a reproductive "cost". To summarize, we present a deconstruction of a sex-shared neural circuit that affects sexual behavior, and how to reprogram it. More broadly, our results are an example of how common neuronal circuits changed their function during evolution by subtle topological rewirings to account for different environmental and sexual needs.

SeminarNeuroscience

The evolution of computation in the brain: Insights from studying the retina

Tom Baden
University of Sussex (UK)
Jun 1, 2022

The retina is probably the most accessible part of the vertebrate central nervous system. Its computational logic can be interrogated in a dish, from patterns of lights as the natural input, to spike trains on the optic nerve as the natural output. Consequently, retinal circuits include some of the best understood computational networks in neuroscience. The retina is also ancient, and central to the emergence of neurally complex life on our planet. Alongside new locomotor strategies, the parallel evolution of image forming vision in vertebrate and invertebrate lineages is thought to have driven speciation during the Cambrian. This early investment in sophisticated vision is evident in the fossil record and from comparing the retina’s structural make up in extant species. Animals as diverse as eagles and lampreys share the same retinal make up of five classes of neurons, arranged into three nuclear layers flanking two synaptic layers. Some retina neuron types can be linked across the entire vertebrate tree of life. And yet, the functions that homologous neurons serve in different species, and the circuits that they innervate to do so, are often distinct to acknowledge the vast differences in species-specific visuo-behavioural demands. In the lab, we aim to leverage the vertebrate retina as a discovery platform for understanding the evolution of computation in the nervous system. Working on zebrafish alongside birds, frogs and sharks, we ask: How do synapses, neurons and networks enable ‘function’, and how can they rearrange to meet new sensory and behavioural demands on evolutionary timescales?

SeminarNeuroscience

How are nervous systems remodeled in complex metazoans?

Marc Freeman
Oregon Health & Science University, Portland OR, USA
May 11, 2022

Early in development the nervous system is constructed with far too many neurons that make an excessive number of synaptic connections.  Later, a wave of neuronal remodeling radically reshapes nervous system wiring and cell numbers through the selective elimination of excess synapses, axons and dendrites, and even whole neurons.  This remodeling is widespread across the nervous system, extensive in terms of how much individual brain regions can change (e.g. in some cases 50% of neurons integrated into a brain circuit are eliminated), and thought to be essential for optimizing nervous system function.  Perturbations of neuronal remodeling are thought to underlie devastating neurodevelopmental disorders including autism spectrum disorder, schizophrenia, and epilepsy.  This seminar will discuss our efforts to use the relatively simple nervous system of Drosophila to understand the mechanistic basis by which cells, or parts of cells, are specified for removal and eliminated from the nervous system.

SeminarNeuroscience

From a by-stander to an influencer: How microglia adapt to altered environments and influence neuronal activity

Sandra Siegert
Institute of Science and Technology Austria
May 2, 2022

Microglia, traditionally classified as immune-responsive, adjust synaptic connections during development and disease. However, their role in the adult nervous system has been mostly diminished to an observer. In my research group, we are interested in how microglia are involved in establishing and maintaining accurate neuronal circuit function in the retina and in the visual cortex. In my talk, I will introduce our strategies how to decipher the microglia’s functional identity and how this information guided us to microglia enabled extracellular matrix remodeling and reinstatment of juvenile-like plasticity in the adult brain.

SeminarNeuroscience

Remembering Immunity, Central regulation of peripheral immune processes

Asya Rolls
Technion, Israel Institute of Technology
May 1, 2022

Thoughts and emotions can impact physiology. This connection is evident by the emergence of disease following stress, psychosomatic disorders, or recovery in response to placebo treatment. Nevertheless, this fundamental aspect of physiology remains largely unexplored. In this talk, I will focus on the brain’s involvement in regulating the peripheral immune response and explore the question of how the brain evaluates and represents the state of the immune system it regulates.

SeminarNeuroscienceRecording

Computation in the neuronal systems close to the critical point

Anna Levina
Universität Tübingen
Apr 28, 2022

It was long hypothesized that natural systems might take advantage of the extended temporal and spatial correlations close to the critical point to improve their computational capabilities. However, on the other side, different distances to criticality were inferred from the recordings of nervous systems. In my talk, I discuss how including additional constraints on the processing time can shift the optimal operating point of the recurrent networks. Moreover, the data from the visual cortex of the monkeys during the attentional task indicate that they flexibly change the closeness to the critical point of the local activity. Overall it suggests that, as we would expect from common sense, the optimal state depends on the task at hand, and the brain adapts to it in a local and fast manner.

SeminarNeuroscience

Revealing the molecular and cellular architecture of the nervous system

Gioele La Manno
EPFL, Lausanne, Switzerland
Apr 5, 2022
SeminarNeuroscience

Mapping the Dynamics of the Linear and 3D Genome of Single Cells in the Developing Brain

Longzhi Tan
Stanford
Mar 29, 2022

Three intimately related dimensions of the mammalian genome—linear DNA sequence, gene transcription, and 3D genome architecture—are crucial for the development of nervous systems. Changes in the linear genome (e.g., de novo mutations), transcriptome, and 3D genome structure lead to debilitating neurodevelopmental disorders, such as autism and schizophrenia. However, current technologies and data are severely limited: (1) 3D genome structures of single brain cells have not been solved; (2) little is known about the dynamics of single-cell transcriptome and 3D genome after birth; (3) true de novo mutations are extremely difficult to distinguish from false positives (DNA damage and/or amplification errors). Here, I filled in this longstanding technological and knowledge gap. I recently developed a high-resolution method—diploid chromatin conformation capture (Dip-C)—which resolved the first 3D structure of the human genome, tackling a longstanding problem dating back to the 1880s. Using Dip-C, I obtained the first 3D genome structure of a single brain cell, and created the first transcriptome and 3D genome atlas of the mouse brain during postnatal development. I found that in adults, 3D genome “structure types” delineate all major cell types, with high correlation between chromatin A/B compartments and gene expression. During development, both transcriptome and 3D genome are extensively transformed in the first month of life. In neurons, 3D genome is rewired across scales, correlated with gene expression modules, and independent of sensory experience. Finally, I examined allele-specific structure of imprinted genes, revealing local and chromosome-wide differences. More recently, I expanded my 3D genome atlas to the human and mouse cerebellum—the most consistently affected brain region in autism. I uncovered unique 3D genome rewiring throughout life, providing a structural basis for the cerebellum’s unique mode of development and aging. In addition, to accurately measure de novo mutations in a single cell, I developed a new method—multiplex end-tagging amplification of complementary strands (META-CS), which eliminates nearly all false positives by virtue of DNA complementarity. Using META-CS, I determined the true mutation spectrum of single human brain cells, free from chemical artifacts. Together, my findings uncovered an unknown dimension of neurodevelopment, and open up opportunities for new treatments for autism and other developmental disorders.

SeminarPhysics of Life

Retinal neurogenesis and lamination: What to become, where to become it and how to move from there!

Caren Norden
Instituto Gulbenkian de Ciência
Mar 24, 2022

The vertebrate retina is an important outpost of the central nervous system, responsible for the perception and transmission of visual information. It consists of five different types of neurons that reproducibly laminate into three layers, a process of crucial importance for the organ’s function. Unsurprisingly, impaired fate decisions as well as impaired neuronal migrations and lamination lead to impaired retinal function. However, how processes are coordinated at the cellular and tissue level and how variable or robust retinal formation is, is currently still underexplored. In my lab, we aim to shed light on these questions from different angles, studying on the one hand differentiation phenomena and their variability and on the other hand the downstream migration and lamination phenomena. We use zebrafish as our main model system due to its excellent possibilities for live imaging and quantitative developmental biology. More recently we also started to use human retinal organoids as a comparative system. We further employ cross disciplinary approaches to address these issues combining work of cell and developmental biology, biomechanics, theory and computer science. Together, this allows us to integrate cell with tissue-wide phenomena and generate an appreciation of the reproducibility and variability of events.

SeminarNeuroscience

Modulation of oligodendrocyte development and myelination by voltage-gated Ca++ channels

Pablo Paez, PhD
Associate Professor, Institute for Myelin and Glia Exploration, Department of Ph ...
Feb 7, 2022

The oligodendrocyte generates CNS myelin, which is essential for normal nervous system function. Thus, investigating the regulatory and signaling mechanisms that control its differentiation and the production of myelin is relevant to our understanding of brain development and of adult pathologies such as multiple sclerosis. We have recently established that the activity of voltage-gated Ca++ channels is crucial for the adequate migration, proliferation and maturation of oligodendrocyte progenitor cells (OPCs). Furthermore, we have found that voltage-gated Ca++ channels that function in synaptic communication between neurons also mediate synaptic signaling between neurons and OPCs. Thus, we hypothesize that voltage-gated Ca++ channels are central components of OPC-neuronal synapses and are the principal ion channels mediating activity-dependent myelination.

SeminarNeuroscience

Visual and cross-modal plasticity in adult humans

Claudia Lunghi
Laboratoire des Systèmes Perceptifs, Ecole Normale Supérieure & CNRS, Paris, France
Feb 2, 2022

Neuroplasticity is a fundamental property of the nervous system that is maximal early in life, within a specific temporal window called critical period. However, it is still unclear to which extent the plastic potential of the visual cortex is retained in adulthood. We have surprisingly revealed residual ocular dominance plasticity in adult humans by showing that short-term monocular deprivation unexpectedly boosts the deprived eye (both at the perceptual and at the neural level), reflecting homeostatic plasticity. This effect is accompanied by a decrease of GABAergic inhibition in the primary visual cortex and can be modulated by non-visual factors (motor activity and motor plasticity). Finally, we have found that cross-modal plasticity is preserved in adult normal-sighted humans, as short-term monocular deprivation can alter early visuo-tactile interactions. Taken together, these results challenge the classical view of a hard-wired adult visual cortex, indicating that homeostatic plasticity can be reactivated in adult humans.

SeminarNeuroscienceRecording

Astrocytes encode complex behaviorally relevant information

Katharina Merten
Nimmerjahn Lab, Salk Institute
Jan 25, 2022

While it is generally accepted that neurons control complex behavior and brain computation, the role of non-neuronal cells in this context remains unclear. Astrocytes, glial cells of the central nervous system, exhibit complex forms of chemical excitation, most prominently calcium transients, evoked by local and projection neuron activity. In this talk, I will provide mechanistic links between astrocytes’ spatiotemporally complex activity patterns, neuronal molecular signaling, and behavior. Using a visual detection task, in vivo calcium imaging, robust statistical analyses, and machine learning approaches, my work shows that cortical astrocytes encode the animal's decision, reward, performance level, and sensory properties. Behavioral context and motor activity-related parameters strongly impact astrocyte responses. Error analysis confirms that astrocytes carry behaviorally relevant information, supporting astrocytes' complementary role to neuronal coding beyond their established homeostatic and metabolic roles.

SeminarNeuroscienceRecording

The GluN2A Subunit of the NMDA Receptor and Parvalbumin Interneurons: A Possible Role in Interneuron Development

Steve Traynelis & Chad Camp
Emory University School of Medicine
Jan 18, 2022

N-methyl-D-aspartate receptors (NMDARs) are excitatory glutamate-gated ion channels that are expressed throughout the central nervous system. NMDARs mediate calcium entry into cells, and are involved in a host of neurological functions. The GluN2A subunit, encoded by the GRIN2A gene, is expressed by both excitatory and inhibitory neurons, with well described roles in pyramidal cells. By using Grin2a knockout mice, we show that the loss of GluN2A signaling impacts parvalbumin-positive (PV) GABAergic interneuron function in hippocampus. Grin2a knockout mice have 33% more PV cells in CA1 compared to wild type but similar cholecystokinin-positive cell density. Immunohistochemistry and electrophysiological recordings show that excess PV cells do eventually incorporate into the hippocampal network and participate in phasic inhibition. Although the morphology of Grin2a knockout PV cells is unaffected, excitability and action-potential firing properties show age-dependent alterations. Preadolescent (P20-25) PV cells have an increased input resistance, longer membrane time constant, longer action-potential half-width, a lower current threshold for depolarization-induced block of action-potential firing, and a decrease in peak action-potential firing rate. Each of these measures are corrected in adulthood, reaching wild type levels, suggesting a potential delay of electrophysiological maturation. The circuit and behavioral implications of this age-dependent PV interneuron malfunction are unknown. However, neonatal Grin2a knockout mice are more susceptible to lipopolysaccharide and febrile-induced seizures, consistent with a critical role for early GluN2A signaling in development and maintenance of excitatory-inhibitory balance. These results could provide insights into how loss-of-function GRIN2A human variants generate an epileptic phenotypes.

SeminarNeuroscience

The neural basis of pain experience and its modulation by opioids

Gregory Scherrer
University of North Carolina, Chapel Hill, USA
Nov 23, 2021

How the brain creates a painful experience remains a mystery. Solving this mystery is crucial to understanding the fundamental biological processes that underlie the perception of body integrity, and to creating better, non-addictive pain treatments. My laboratory’s goal is to resolve the neural basis of pain. We aim to understand the mechanisms by which our nervous system produces and assembles the sensory-discriminative, affective-motivational, and cognitive-evaluative dimensions of pain to create this unique and critically important experience. To capture every component of the pain experience, we examine the entirety of the pain circuitry, from sensory and spinal ascending pathways to cortical/subcortical circuits and brainstem descending pain modulation systems, at the molecular, cellular, circuit and whole-animal levels. For these studies, we have invented novel behavioral paradigms to interrogate the affective and cognitive dimensions of pain in mice while simultaneously imaging and manipulating nociceptive circuits. My laboratory also investigates how opioids suppress pain. Remarkably, despite their medical and societal significance, how opium poppy alkaloids such as morphine produce profound analgesia remains largely unexplained. By identifying where and how opioids act in neural circuits, we not only establish the mechanisms of action of one of the oldest drugs known to humans, but also reveal the critical elements of the pain circuitry for developing of novel analgesics and bringing an end to the opioid epidemic.

SeminarNeuroscience

Reflex Regulation of Innate Immunity

Kevin Tracey
Northwell Health
Nov 7, 2021

Reflex circuits in the nervous system integrate changes in the environment with physiology. Compact clusters of brain neuron cell bodies, termed nuclei, are essential for receiving sensory input and for transmitting motor outputs to the body. These nucelii are critical relay stations which process incoming information and convert these signals to outgoing action potentials which regulate immune system functions. Thus, reflex neural circuits maintain parameters of immunological physiology within a narrow range optimal for health. Advances in neuroscience and immunology using optogenetics, pharmacogenetics, and functional mapping offer a new understanding of the importance of neural circuitry underlying immunity, and offer direct paths to new therapies.

SeminarNeuroscienceRecording

Reverse engineering Hydra

Adrienne Fairhall
University of Washington
Oct 7, 2021

Hydra is an extraordinary creature. Continuously replacing itself, it can live indefinitely, performing a stable repertoire of reasonably sophisticated behaviors. This remarkable stability under plasticity may be due to the uniform nature of its nervous system, which consists of two apparently noncommunicating nerve net layers. We use modeling to understand the role of active muscles and biomechanics interact with neural activity to shape Hydra behaviour. We will discuss our findings and thoughts on how this simple nervous system may self-organize to produce purposeful behavior.

SeminarNeuroscience

Themes and Variations: Circuit mechanisms of behavioral evolution

Vanessa Ruta
The Rockefeller University, New York, USA
Sep 28, 2021

Animals exhibit extraordinary variation in their behavior, yet little is known about the neural mechanisms that generate this diversity. My lab has been taking advantage of the rapid diversification of male courtship behaviors in Drosophila to glean insight into how evolution shapes the nervous system to generate species-specific behaviors. By translating neurogenetic tools from D. melanogaster to closely related Drosophila species, we have begun to directly compare the homologous neural circuits and pinpoint sites of adaptive change. Across species, P1 neurons serve as a conserved node in regulating male courtship: these neurons are selectively activated by the sensory cues indicative of an appropriate mate and their activation triggers enduring courtship displays. We have been examining how different sensory pathways converge onto P1 neurons to regulate a male’s state of arousal, honing his pursuit of a prospective partner. Moreover, by performing cross-species comparison of these circuits, we have begun to gain insight into how reweighting of sensory inputs to P1 neurons underlies species-specific mate recognition. Our results suggest how variation at flexible nodes within the nervous system can serve as a substrate for behavioral evolution, shedding light on the types of changes that are possible and preferable within brain circuits.

SeminarNeuroscience

Microbiota in the health of the nervous system and the response to stress

Andrea Calixto
Universidad de Valparaiso, Chile
Sep 26, 2021

Microbes have shaped the evolution of eukaryotes and contribute significantly to the physiology and behavior of animals. Some of these traits are inherited by the progenies. Despite the vast importance of microbe-host communication, we still do not know how bacteria change short term traits or long-term decisions in individuals or communities. In this seminar I will present our work on how commensal and pathogenic bacteria impact specific neuronal phenotypes and decision making. The traits we specifically study are the degeneration and regeneration of neurons and survival behaviors in animals. We use the nematode Caenorhabditis elegans and its dietary bacteria as model organisms. Both nematode and bacteria are genetically tractable, simplifying the detection of specific molecules and their effect on measurable characteristics. To identify these molecules we analyze their genomes, transcriptomes and metabolomes, followed by functional in vivo validation. We found that specific bacterial RNAs and bacterially produced neurotransmitters are key to trigger a survival behavioral and neuronal protection respectively. While RNAs cause responses that lasts for many generations we are still investigating whether bacterial metabolites are capable of inducing long lasting phenotypic changes.

SeminarNeuroscience

Electrophysiologic Monitoring and Modulation of Enteric Nervous System

Todd Coleman
Stanford University
Aug 12, 2021

We will highlight recent technological and methodological advances in deploying miniaturized technologies that can monitor the spatial electrophysiologic patterns of the visceral nervous system. As an example, we will discuss recent developments of thin, stretchable, wireless biosensor patches that can be embedded within routinely used medical adhesives for recording electrophysiologic patterns of the GI tract. We will also showcase recent developments in array signal processing that enable non-invasive tracking, and source localization, of the slow wave patterns associated with the GI tract. We will illustrate how such systems can also be used in tandem with novel miniaturized pacing devices to can enable closed-loop neuromodulation of the enteric nervous system. We will conclude with a summary of the knowns and unknowns in how multi-organ physiology research, technology miniaturization, and data science may create unique opportunities for the intersection of electrical engineering and neuroscience.

SeminarNeuroscience

As soon as there was life there was danger

Joseph LeDoux
New York University
Jun 28, 2021

Organisms face challenges to survival throughout life. When we freeze or flee in danger, we often feel fear. Tracing the deep history of danger gives a different perspective. The first cells living billions of years ago had to detect and respond to danger in order to survive. Life is about not being dead, and behavior is a major way that organisms hold death off. Although behavior does not require a nervous system, complex organisms have brain circuits for detecting and responding to danger, the deep roots of which go back to the first cells. But these circuits do not make fear, and fear is not the cause of why we freeze or flee. Fear a human invention; a construct we use to account for what happens in our minds when we become aware that we are in harm’s way. This requires a brain that can personally know that it existed in the past, that it is the entity that might be harmed in the present, and that it will cease to exist it the future. If other animals have conscious experiences, they cannot have the kinds of conscious experiences we have because they do not have the kinds of brains we have. This is not meant as a denial of animal consciousness; it is simply a statement about the fact that every species has a different brain. Nor is it a declaration about the wonders of the human brain, since we have done some wonderful, but also horrific, things with our brains. In fact, we are on the way to a climatic disaster that will not, as some suggest, destroy the Earth. But it will make it inhabitable for our kind, and other organisms with high energy demands. Bacteria have made it for billions of years and will likely be fine. The rest is up for grabs, and, in a very real sense, up to us.

SeminarNeuroscience

Roles of microglia in the pathogenesis of neurodegeneration

Rosa C. Paolicelli
University of Lausanne
Jun 16, 2021

Microglia are implicated in a variety of functions in the central nervous system, ranging from shaping neural circuits during early brain development, to surveying the brain parenchyma, and providing trophic support to neurons across the entire lifespan. In neurodegeneration, microglia have been considered for long time mere bystanders, accompanying and worsening neuronal damage. However, recent evidence indicates that microglia can causally contribute to neurodegenerative diseases, and that their dysfunction can even be at the origin of the pathology. In fact, the broad range of physiological roles microglia play in the healthy brain suggest that faulty microglia can initiate neurodegeneration through several possible mechanisms. In particular, in this seminar, we will discuss how dysfunctional microglia can affect synaptic function leading to pathological synapse loss, thus putting microglia center stage in the pathogenesis of brain disorders.

SeminarNeuroscienceRecording

Regenerative Neuroimmunology - a stem cell perspective

Stefano Pluchino
Department of Clinical Neurosciences, University of Cambridge
May 31, 2021

There are currently no approved therapies to slow down the accumulation of neurological disability that occurs independently of relapses in multiple sclerosis (MS). International agencies are engaging to expedite the development of novel strategies capable of modifying disease progression, abrogating persistent CNS inflammation, and support degenerating axons in people with progressive MS. Understanding why regeneration fails in the progressive MS brain and developing new regenerative approaches is a key priority for the Pluchino Lab. In particular, we aim to elucidate how the immune system, in particular its cells called myeloid cells, affects brain structure and function under normal healthy conditions and in disease. Our objective is to find how myeloid cells communicate with the central nervous system and affect tissue healing and functional recovery by stimulating mechanisms of brain plasticity mechanisms such as the generation of new nerve cells and the reduction of scar formation. Applying combination of state-of-the-art omic technologies, and molecular approaches to study murine and human disease models of inflammation and neurodegeneration, we aim to develop experimental molecular medicines, including those with stem cells and gene therapy vectors, which slow down the accumulation of irreversible disabilities and improve functional recovery after progressive multiple sclerosis, stroke and traumatic injuries. By understanding the mechanisms of intercellular (neuro-immune) signalling, diseases of the brain and spinal cord may be treated more effectively, and significant neuroprotection may be achieved with new tailored molecular therapeutics.

SeminarNeuroscience

Untitled Seminar

Sean Millard (Brisbane, Australia), Patricia Jusuf (Melbourne, Australia), Victor Borrell (Alicante, Spain), Louise Cheng (Melbourne, Australia)
May 25, 2021

Sean Miller will present "From brain wiring to synaptic physiology - reuse of a cell recognition molecule to carry out higher order nervous system functions". Then, Patricia Jusuf will talk about " Visual vertebrate pipeline for assessing novel human GWAS gene candidates". Victor Borrell with deal with the "Genetic evolution of cerebral cortex size determinants" and Louise Cheng will present

SeminarNeuroscience

Learning to perceive with new sensory signals

Marko Nardini
Durham University
May 18, 2021

I will begin by describing recent research taking a new, model-based approach to perceptual development. This approach uncovers fundamental changes in information processing underlying the protracted development of perception, action, and decision-making in childhood. For example, integration of multiple sensory estimates via reliability-weighted averaging – widely used by adults to improve perception – is often not seen until surprisingly late into childhood, as assessed by both behaviour and neural representations. This approach forms the basis for a newer question: the scope for the nervous system to deploy useful computations (e.g. reliability-weighted averaging) to optimise perception and action using newly-learned sensory signals provided by technology. Our initial model system is augmenting visual depth perception with devices translating distance into auditory or vibro-tactile signals. This problem has immediate applications to people with partial vision loss, but the broader question concerns our scope to use technology to tune in to any signal not available to our native biological receptors. I will describe initial progress on this problem, and our approach to operationalising what it might mean to adopt a new signal comparably to a native sense. This will include testing for its integration (weighted averaging) alongside the native senses, assessing the level at which this integration happens in the brain, and measuring the degree of ‘automaticity’ with which new signals are used, compared with native perception.

SeminarNeuroscienceRecording

Neural codes in early sensory areas maximize fitness

Todd Hare
University of Zürich
May 12, 2021

It has generally been presumed that sensory information encoded by a nervous system should be as accurate as its biological limitations allow. However, perhaps counter intuitively, accurate representations of sensory signals do not necessarily maximize the organism’s chances of survival. We show that neural codes that maximize reward expectation—and not accurate sensory representations—account for retinal responses in insects, and retinotopically-specific adaptive codes in humans. Thus, our results provide evidence that fitness-maximizing rules imposed by the environment are applied at the earliest stages of sensory processing.

SeminarNeuroscience

Stereo vision in humans and insects

Jenny Read
Newcastle University
May 11, 2021

Stereopsis – deriving information about distance by comparing views from two eyes – is widespread in vertebrates but so far known in only class of invertebrates, the praying mantids. Understanding stereopsis which has evolved independently in such a different nervous system promises to shed light on the constraints governing any stereo system. Behavioral experiments indicate that insect stereopsis is functionally very different from that studied in vertebrates. Vertebrate stereopsis depends on matching up the pattern of contrast in the two eyes; it works in static scenes, and may have evolved in order to break camouflage rather than to detect distances. Insect stereopsis matches up regions of the image where the luminance is changing; it is insensitive to the detailed pattern of contrast and operates to detect the distance to a moving target. Work from my lab has revealed a network of neurons within the mantis brain which are tuned to binocular disparity, including some that project to early visual areas. This is in contrast to previous theories which postulated that disparity was computed only at a single, late stage, where visual information is passed down to motor neurons. Thus, despite their very different properties, the underlying neural mechanisms supporting vertebrate and insect stereopsis may be computationally more similar than has been assumed.

SeminarNeuroscienceRecording

Neural dynamics underlying temporal inference

Devika Narain
Erasmus Medical Centre
Apr 26, 2021

Animals possess the ability to effortlessly and precisely time their actions even though information received from the world is often ambiguous and is inadvertently transformed as it passes through the nervous system. With such uncertainty pervading through our nervous systems, we could expect that much of human and animal behavior relies on inference that incorporates an important additional source of information, prior knowledge of the environment. These concepts have long been studied under the framework of Bayesian inference with substantial corroboration over the last decade that human time perception is consistent with such models. We, however, know little about the neural mechanisms that enable Bayesian signatures to emerge in temporal perception. I will present our work on three facets of this problem, how Bayesian estimates are encoded in neural populations, how these estimates are used to generate time intervals, and how prior knowledge for these tasks is acquired and optimized by neural circuits. We trained monkeys to perform an interval reproduction task and found their behavior to be consistent with Bayesian inference. Using insights from electrophysiology and in silico models, we propose a mechanism by which cortical populations encode Bayesian estimates and utilize them to generate time intervals. Thereafter, I will present a circuit model for how temporal priors can be acquired by cerebellar machinery leading to estimates consistent with Bayesian theory. Based on electrophysiology and anatomy experiments in rodents, I will provide some support for this model. Overall, these findings attempt to bridge insights from normative frameworks of Bayesian inference with potential neural implementations for the acquisition, estimation, and production of timing behaviors.

SeminarNeuroscienceRecording

How Brain Circuits Function in Health and Disease: Understanding Brain-wide Current Flow

Kanaka Rajan
Icahn School of Medicine at Mount Sinai, New York
Apr 13, 2021

Dr. Rajan and her lab design neural network models based on experimental data, and reverse-engineer them to figure out how brain circuits function in health and disease. They recently developed a powerful framework for tracing neural paths across multiple brain regions— called Current-Based Decomposition (CURBD). This new approach enables the computation of excitatory and inhibitory input currents that drive a given neuron, aiding in the discovery of how entire populations of neurons behave across multiple interacting brain regions. Dr. Rajan’s team has applied this method to studying the neural underpinnings of behavior. As an example, when CURBD was applied to data gathered from an animal model often used to study depression- and anxiety-like behaviors (i.e., learned helplessness) the underlying biology driving adaptive and maladaptive behaviors in the face of stress was revealed. With this framework Dr. Rajan's team probes for mechanisms at work across brain regions that support both healthy and disease states-- as well as identify key divergences from multiple different nervous systems, including zebrafish, mice, non-human primates, and humans.

SeminarNeuroscience

Neuroimmune interactions in Cardiovascular Diseases

Daniela Carnevale
“Sapienza” University of Rome
Mar 28, 2021

The nervous system and the immune system share the common ability to exert gatekeeper roles at the interfaces between internal and external environment. Although interaction between these two evolutionarily highly conserved systems is long recognized, the pathophysiological mechanisms regulating their reciprocal crosstalk in cardiovascular diseases became object of investigation only more recently. In the last years, our group elucidated how the autonomic nervous system controls the splenic immunity recruited by hypertensive challenges. In my talk, I will focus on the molecular mechanisms that regulate the neuro-immune crosstalk in hypertension. I will elaborate on the mechanistic insights into this brain-spleen axis led us uncover a new molecular pathway mediating the neuroimmune interaction established by noradrenergic-mediated release in the spleen of placental growth factor (PlGF), an angiogenic growth factor potentially targetable with pharmacological approaches.

SeminarNeuroscience

Gut Feelings: The Microbiota-Gut-Brain Axis Across the Lifespan

John Cryan
University College Cork
Mar 21, 2021

The microbiota-gut-brain axis is emerging as a research area of increasing interest for those investigating the biological and physiological basis of brain development and behaviour during early life, adolescence & ageing. The routes of communication between the gut and brain include the vagus nerve, the immune system, tryptophan metabolism, via the enteric nervous system or by way of microbial metabolites such as short chain fatty acids. Studies in animal models have shown that the development of an appropriate stress response is dependent on the microbiota. Developmentally, a variety of factors can impact the microbiota in early life including mode of birth delivery, antibiotic exposure, mode of nutritional provision, infection, stress as well as host genetics. Recently, the gut microbiota has been implicated in regulating the stress response, and social behaviour. Moreover, fundamental brain processes from adult hippocampal neurogenesis to myelination to microglia activation have been shown to be regulated by the microbiome. Further studies will focus on understanding the mechanisms underlying such brain effects and how they can be exploited by microbiota-targeted interventions including ‘psychobiotics’ and diet

SeminarNeuroscience

Brain Awareness Week @ IITGN

Dr. Anindya Ghosh Roy
Anindya Ghosh Roy
Mar 16, 2021

Traumatic injury in the nervous system leads to devastating consequences such as paralysis. The regenerative capacity of the nervous system is limited in adulthood. In this talk, Dr. Anindya would be sharing how the simple nematode C. elegans with its known connectome can inform us about the biology of nervous system repair.

SeminarNeuroscience

How the immune system shapes synaptic functions

Michela Matteoli
Humanitas Research Hospital and CNR Institute of Neuroscience, Milano, Italy
Mar 15, 2021

The synapse is the core component of the nervous system and synapse formation is the critical step in the assembly of neuronal circuits. The assembly and maturation of synapses requires the contribution of secreted and membrane-associated proteins, with neuronal activity playing crucial roles in regulating synaptic strength, neuronal membrane properties, and neural circuit refinement. The molecular mechanisms of synapse assembly and refinement have been so far largely examined on a gene-by-gene basis and with a perspective fully centered on neuronal cells. However, in the last years, the involvement of non-neuronal cells has emerged. Among these, microglia, the resident immune cells of the central nervous system, have been shown to play a key role in synapse formation and elimination. Contacts of microglia with dendrites in the somatosensory cortex were found to induce filopodia and dendritic spines via Ca2+ and actin-dependent processes, while microglia-derived BDNF was shown to promote learning-dependent synapse formation. Microglia is also recognized to have a central role in the widespread elimination (or pruning) of exuberant synaptic connections during development. Clarifying the processes by which microglia control synapse homeostasis is essential to advance our current understanding of brain functions. Clear answers to these questions will have important implications for our understanding of brain diseases, as the fact that many psychiatric and neurological disorders are synaptopathies (i.e. diseases of the synapse) is now widely recognized. In the last years, my group has identified TREM2, an innate immune receptor with phagocytic and antiinflammatory properties expressed in brain exclusively by microglia, as essential for microglia-mediated synaptic refinement during the early stages of brain development. The talk will describe the role of TREM2 in synapse elimination and introduce the molecular actors involved. I will also describe additional pathways by which the immune system may affect the formation and homeostasis of synaptic contacts.

SeminarNeuroscience

Neural circuit parameter variability, robustness, and homeostasis

Astrid Prinz
Emory University
Mar 11, 2021

Neurons and neural circuits can produce stereotyped and reliable output activity on the basis of highly variable cellular, synaptic, and circuit properties. This is crucial for proper nervous system function throughout an animal’s life in the face of growth, perturbations, and molecular turnover. But how can reliable output arise from neurons and synapses whose parameter vary between individuals in a population, and within an individual over time? I will review how a combination of experimental and computational methods can be used to examine how neuron and network function depends on the underlying parameters, such as neuronal membrane conductances and synaptic strengths. Within the high-dimensional parameter space of a neural system, the subset of parameter combinations that produce biologically functional neuron or circuit activity is captured by the notion of a ‘solution space’. I will describe solution space structures determined from electrophysiology data, ion channel expression levels across populations of neurons and animals, and computational parameter space explorations. A key finding centers on experimental and computational evidence for parameter correlations that give structure to solution spaces. Computational modeling suggests that such parameter correlations can be beneficial for constraining neuron and circuit properties to functional regimes, while experimental results indicate that neural circuits may have evolved to implement some of these beneficial parameter correlations at the cellular level. Finally, I will review modeling work and experiments that seek to illuminate how neural systems can homeostatically navigate their parameter spaces to stably remain within their solution space and reliably produce functional output, or to return to their solution space after perturbations that temporarily disrupt proper neuron or network function.

ePoster

Unified C. elegans Neural Activity and Connectivity Datasets for Building Foundation Models of a Small Nervous System

Quilee Simeon, Anshul Kashyap, Konrad Kording, Ed Boyden

Bernstein Conference 2024

ePoster

Integrating deep reinforcement learning agents with the C. elegans nervous system

COSYNE 2022

ePoster

Integrating deep reinforcement learning agents with the C. elegans nervous system

COSYNE 2022

ePoster

Amyotrophic lateral sclerosis and the central nervous system: The effect of the disease on cortical electrophysiological activity

Ilaria Donati della Lunga, Martina Brofiga, Valerio Barabino, Francesca Bacchetti, Bruno Burlando, Marco Milanese, Paolo Massobrio

FENS Forum 2024

ePoster

Changes in autonomic nervous system function following administration of probiotics in mild Alzheimer’s patients

Stella Angeli, Ioanna Kousiappa, Stelios Georgiades, Savvas Papacostas, Andreas Koupparis, Yiolanda Christou, Archontia Adamou, Benson Botchway, George Loucaides, Gavriella Alexandrou, Stavros Bashiardes, Andreas Hadjisavvas, Michail Panagiotidis, Aleksandar Jovanovic, Nicoletta Nicolaou

FENS Forum 2024

ePoster

Comparative proteomic profiling to identify mechanisms governing nervous system stability in neurodegenerative disease

Swetha Umashankar, Samantha Eaton, Rachel Kline, Dominic Kurian, Jonathan Cooper, Colin Smith, Thomas Wishart

FENS Forum 2024

ePoster

Diiodothyropropionic acid facilitates oligodendrocyte differentiation and myelination to enhance neuroprotection and neurorepair in the central nervous system

Rahimeh Emamnejad, Steven Petratos, Ezgi Ozturk, Maurice Pagnin

FENS Forum 2024

ePoster

Dissecting the role of androgen receptor in the central nervous system

Elisa Bregolin, Diana Piol, Emanuela Zuccaro, Maria Pennuto

FENS Forum 2024

ePoster

Early onset of tau pathology in the olfactory system of PS19 mice: A pathway for the progression of tauopathy in the central nervous system

Marion Dourte, Pascal Kienlen-Campard, Florence Chainiaux-Debacq, Esther Paître, Mongia Bouchoucha

FENS Forum 2024

ePoster

Expression of an immunoglobulin constant domain gene in neurons of the mouse central nervous system

Francesca Pietrafesa, Louis Scheurer, David P. Wolfer, Irmgard Amrein, Sónia Gonçalves Matos, Hanns Ulrich Zeilhofer, Hendrik Wildner

FENS Forum 2024

ePoster

Mapping orexin/hypocretin receptor expression in the central nervous system after incomplete spinal cord injury in mice

Lara Buenvarón Medialdea, Francisco Ciruela, África Flores

FENS Forum 2024

ePoster

Meningeal neural progenitors respond to central nervous system autoimmune disease and interact with immune cells

Francesca Ciarpella, Stefania Zorzin, Celia Lerma Martin, Alessandro Bani, Barbara Rossi, Silvia Dusi, Benedetta Lucidi, Andrea Corsi, Sissi Dolci, Bruno Miguel Dos Santos Lima, Nicola Lopez, Lucas Schirmer, Francesco Bifari, Gabriela Constantin, Ilaria Decimo

FENS Forum 2024

ePoster

Method for 3D quantitative analysis of enteric nervous system remodeling in mouse and human gut tissues

Arielle Planchette, Ivana Gantar, Yoseline Cabara, Jules Scholler, Aleksander Sobolewski, Stéphane Pagès, Michalina Gora

FENS Forum 2024

ePoster

NR5A2 coordinately regulates hypoxia response and metabolism in neural cells: Implications for nervous system-related diseases

Dimitrios Gkikas, Milioti Panagiota, Markidi Eliana, Nomikou Angeliki, Stergiopoulos Athanasios, Rozani Ismini, Kaltezioti Valeria, Vatselas Giannis, Valakos Dimitrios, Politis Panagiotis K.

FENS Forum 2024

ePoster

Olfactory ensheathing cells and fibroblasts: Dynamic partners in nervous system repair and regeneration

Francesca Oieni, Ronak Reshamwala, Megha Shah, Joshua Ingles, Jenny A K Ekberg, James St John

FENS Forum 2024

ePoster

Patterning and functionality of the regenerated nervous system

Carina Seidl, Elly Tanaka

FENS Forum 2024

ePoster

Reconstructing the neural architecture of the cnidarian Nematostella vectensis to understand evolution of the nervous system

Abhishek Mishra, Alison Cole, Linda Kloẞ, Ulrich Technau

FENS Forum 2024

ePoster

Shedding light on central nervous system trehalose activity

Davide Camazzola, Simone Serrao, Alessandro Esposito, Giuseppe Martano, Giuseppe Paglia, Fabrizia Claudia Guarnieri, Luca Murru

FENS Forum 2024

ePoster

Smart Glia: Investigating the nervous system plasticity upon cancer

Assunta Virtuoso, Giampaolo Milior, Alesya Evstratova, Julien Moulard, Gilles Huberfeld, Nathalie Rouach, Michele Papa

FENS Forum 2024

ePoster

Synergistic effect of melatonin and methylprednisolone on reducing disability in EAE by ameliorating induction, migration, and reactivation of T cells in the central nervous system

Ana Isabel Alvarez Lopez, Patricia Judith Lardone, Nuria Alvarez Sanchez, Ivan Cruz Chamorro, Guillermo Santos Sanchez, Eduardo Ponce España, Ignacio Bejarano, Antonio Carrillo Vico

FENS Forum 2024