Network Function
network function
Activity dependent myelination: a mechanism for learning and regeneration?
The CNS is responsive to an ever-changing environment. Until recently, studies of neural plasticity focused almost exclusively on functional and structural changes of neuronal synapses. In recent years, myelin plasticity has emerged as a potential modulator of neural networks. Myelination of previously unmyelinated axons, and changes in the structure on already-myelinated axons, can have large effects on network function. The heterogeneity of the extent of how axons in the CNS are myelinated offers diverse scope for dynamic myelin changes to fine-tune neural circuits. The traditionally held view of myelin as a passive insulator of axons is now changing to one of lifelong changes in myelin, modulated by neuronal activity and experience. Myelin, produced by oligodendrocytes (OLs), is essential for normal brain function, as it provides fast signal transmission, promotes synchronization of neuronal signals and helps to maintain neuronal function. OLs differentiate from oligodendrocyte precursor cells (OPCs), which are distributed throughout the adult brain, and myelination continues into late adulthood. OPCs can sense neuronal activity as they receive synaptic inputs from neurons and express voltage-gated ion channels and neurotransmitter receptors, and differentiate into myelinating OLs in response to changes in neuronal activity. This lecture will explore to what extent myelin plasticity occurs in adult animals, whether myelin changes occur in non-motor learning tasks, especially in learning and memory, and questions whether myelin plasticity and myelin regeneration are two sides of the same coin.
State-dependent cortical circuits
Spontaneous and sensory-evoked cortical activity is highly state-dependent, promoting the functional flexibility of cortical circuits underlying perception and cognition. Using neural recordings in combination with behavioral state monitoring, we find that arousal and motor activity have complementary roles in regulating local cortical operations, providing dynamic control of sensory encoding. These changes in encoding are linked to altered performance on perceptual tasks. Neuromodulators, such as acetylcholine, may regulate this state-dependent flexibility of cortical network function. We therefore recently developed an approach for dual mesoscopic imaging of acetylcholine release and neural activity across the entire cortical mantle in behaving mice. We find spatiotemporally heterogeneous patterns of cholinergic signaling across the cortex. Transitions between distinct behavioral states reorganize the structure of large-scale cortico-cortical networks and differentially regulate the relationship between cholinergic signals and neural activity. Together, our findings suggest dynamic state-dependent regulation of cortical network operations at the levels of both local and large-scale circuits. Zoom Meeting ID: 964 8138 3003 Contact host if you cannot connect.
Neural circuit parameter variability, robustness, and homeostasis
Neurons and neural circuits can produce stereotyped and reliable output activity on the basis of highly variable cellular, synaptic, and circuit properties. This is crucial for proper nervous system function throughout an animal’s life in the face of growth, perturbations, and molecular turnover. But how can reliable output arise from neurons and synapses whose parameter vary between individuals in a population, and within an individual over time? I will review how a combination of experimental and computational methods can be used to examine how neuron and network function depends on the underlying parameters, such as neuronal membrane conductances and synaptic strengths. Within the high-dimensional parameter space of a neural system, the subset of parameter combinations that produce biologically functional neuron or circuit activity is captured by the notion of a ‘solution space’. I will describe solution space structures determined from electrophysiology data, ion channel expression levels across populations of neurons and animals, and computational parameter space explorations. A key finding centers on experimental and computational evidence for parameter correlations that give structure to solution spaces. Computational modeling suggests that such parameter correlations can be beneficial for constraining neuron and circuit properties to functional regimes, while experimental results indicate that neural circuits may have evolved to implement some of these beneficial parameter correlations at the cellular level. Finally, I will review modeling work and experiments that seek to illuminate how neural systems can homeostatically navigate their parameter spaces to stably remain within their solution space and reliably produce functional output, or to return to their solution space after perturbations that temporarily disrupt proper neuron or network function.
A geometric framework to predict structure from function in neural networks
The structural connectivity matrix of synaptic weights between neurons is a critical determinant of overall network function. However, quantitative links between neural network structure and function are complex and subtle. For example, many networks can give rise to similar functional responses, and the same network can function differently depending on context. Whether certain patterns of synaptic connectivity are required to generate specific network-level computations is largely unknown. Here we introduce a geometric framework for identifying synaptic connections required by steady-state responses in recurrent networks of rectified-linear neurons. Assuming that the number of specified response patterns does not exceed the number of input synapses, we analytically calculate all feedforward and recurrent connectivity matrices that can generate the specified responses from the network inputs. We then use this analytical characterization to rigorously analyze the solution space geometry and derive certainty conditions guaranteeing a non-zero synapse between neurons.
State-dependent cortical circuits
Spontaneous and sensory-evoked cortical activity is highly state-dependent, promoting the functional flexibility of cortical circuits underlying perception and cognition. Using neural recordings in combination with behavioral state monitoring, we find that arousal and motor activity have complementary roles in regulating local cortical operations, providing dynamic control of sensory encoding. These changes in encoding are linked to altered performance on perceptual tasks. Neuromodulators, such as acetylcholine, may regulate this state-dependent flexibility of cortical network function. We therefore recently developed an approach for dual mesoscopic imaging of acetylcholine release and neural activity across the entire cortical mantle in behaving mice. We find spatiotemporally heterogeneous patterns of cholinergic signaling across the cortex. Transitions between distinct behavioral states reorganize the structure of large-scale cortico-cortical networks and differentially regulate the relationship between cholinergic signals and neural activity. Together, our findings suggest dynamic state-dependent regulation of cortical network operations at the levels of both local and large-scale circuits.
Distinct synaptic plasticity mechanisms determine the diversity of cortical responses during behavior
Spike trains recorded from the cortex of behaving animals can be complex, highly variable from trial to trial, and therefore challenging to interpret. A fraction of cells exhibit trial-averaged responses with obvious task-related features such as pure tone frequency tuning in auditory cortex. However, a substantial number of cells (including cells in primary sensory cortex) do not appear to fire in a task-related manner and are often neglected from analysis. We recently used a novel single-trial, spike-timing-based analysis to show that both classically responsive and non-classically responsive cortical neurons contain significant information about sensory stimuli and behavioral decisions suggesting that non-classically responsive cells may play an underappreciated role in perception and behavior. We now expand this investigation to explore the synaptic origins and potential contribution of these cells to network function. To do so, we trained a novel spiking recurrent neural network model that incorporates spike-timing-dependent plasticity (STDP) mechanisms to perform the same task as behaving animals. By leveraging excitatory and inhibitory plasticity rules this model reproduces neurons with response profiles that are consistent with previously published experimental data, including classically responsive and non-classically responsive neurons. We found that both classically responsive and non-classically responsive neurons encode behavioral variables in their spike times as seen in vivo. Interestingly, plasticity in excitatory-to-excitatory synapses increased the proportion of non-classically responsive neurons and may play a significant role in determining response profiles. Finally, our model also makes predictions about the synaptic origins of classically and non-classically responsive neurons which we can compare to in vivo whole-cell recordings taken from the auditory cortex of behaving animals. This approach successfully recapitulates heterogeneous response profiles measured from behaving animals and provides a powerful lens for exploring large-scale neuronal dynamics and the plasticity rules that shape them.
State-dependent regulation of cortical circuits
Spontaneous and sensory-evoked cortical activity is highly state-dependent, promoting the functional flexibility of cortical circuits underlying perception and cognition. Using neural recordings in combination with behavioral state monitoring, we find that arousal and motor activity have complementary roles in regulating local cortical operations, providing dynamic control of sensory encoding. These changes in encoding are linked to altered performance on perceptual tasks. Neuromodulators, such as acetylcholine, may regulate this state-dependent flexibility of cortical network function. We therefore recently developed an approach for dual mesoscopic imaging of acetylcholine release and neural activity across the entire cortical mantle in behaving mice. We find spatiotemporally heterogeneous patterns of cholinergic signaling across the cortex. Transitions between distinct behavioral states reorganize the structure of large-scale cortico-cortical networks and differentially regulate the relationship between cholinergic signals and neural activity. Together, our findings suggest dynamic state-dependent regulation of cortical network operations at the levels of both local and large-scale circuits.
Differential Resilience of Neurons and Networks with Similar Behavior to Perturbation
Both computational and experimental results in single neurons and small networks demonstrate that very similar network function can result from quite disparate sets of neuronal and network parameters. Using the crustacean stomatogastric nervous system, we study the influence of these differences in underlying structure on differential resilience of individuals to a variety of environmental perturbations, including changes in temperature, pH, potassium concentration and neuromodulation. We show that neurons with many different kinds of ion channels can smoothly move through different mechanisms in generating their activity patterns, thus extending their dynamic range.
Differential Resilience of Neurons and Networks with Similar Behavior to Perturbation. (Simultaneous translation to Spanish)
Both computational and experimental results in single neurons and small networks demonstrate that very similar network function can result from quite disparate sets of neuronal and network parameters. Using the crustacean stomatogastric nervous system, we study the influence of these differences in underlying structure on differential resilience of individuals to a variety of environmental perturbations, including changes in temperature, pH, potassium concentration and neuromodulation. We show that neurons with many different kinds of ion channels can smoothly move through different mechanisms in generating their activity patterns, thus extending their dynamic range. The talk will be simultaneously translated to spanish by the interpreter Liliana Viera, MSc. Los resultados tanto computacionales como experimentales en neuronas individuales y redes pequeñas demuestran que funcionamientos de redes muy similares pueden pueden resultar de conjuntos bastante dispares de parámetros neuronales y de las redes. Utilizando el sistema nervioso estomatogástrico de los crustáceos, estudiamos la influencia de estas diferencias en la estructura subyacente en la resistencia diferencial de los individuos a una variedad de perturbaciones ambientales, incluidos los cambios de temperatura, pH, concentración de potasio y neuromodulación. Mostramos que neuronas con muchos tipos diferentes de canales iónicos pueden moverse suavemente a través de diferentes mecanismos para generar sus patrones de actividad, extendiendo así su rango dinámico. La conferencia será traducida simultáneamente al español por la intérprete Liliana Viera MSc.
Network function and electrophysiological properties are impaired in corticomotor neurons of C9orf72 loss-of-function and gain-of-function ALS mouse models
FENS Forum 2024
Stronger daily-life affective benefits during solitude in people with higher default mode network functional connectivity
FENS Forum 2024