Network Modeling
network modeling
Prof. Dr. Sonja Grün
At the Institute of Advanced Simulation (IAS-6) at the Research Center Juelich a PhD position is available in the field of Computational Neuroscience to investigate cross-area interactions in the visuo-motor pathway of non-human primates during a visually guided motor task. The data are provided by our experimental partners at INT, CNRS, Marseille. Simultaneous electrophysiological recordings by multiple Utah electrode arrays implanted in V1, V2, V4, 7a, DP and M1 will be studied driven by predictions from theory and network modeling to gain a mechanistic understanding of cross-area interaction signatures. The project is embedded in the interdisciplinary work program of the IAS-6 (www.csn.fz-juelich.de) with experts from network modeling, analytical theory, data analytics, AI and neuromorphic computing.
Neural mechanisms of rhythmic motor control in Drosophila
All animal locomotion is rhythmic,whether it is achieved through undulatory movement of the whole body or the coordination of articulated limbs. Neurobiologists have long studied locomotor circuits that produce rhythmic activity with non-rhythmic input, also called central pattern generators (CPGs). However, the cellular and microcircuit implementation of a walking CPG has not been described for any limbed animal. New comprehensive connectomes of the fruit fly ventral nerve cord (VNC) provide an opportunity to study rhythmogenic walking circuits at a synaptic scale.We use a data-driven network modeling approach to identify and characterize a putative walking CPG in the Drosophila leg motor system.
From cells to systems: multiscale studies of the epileptic brain
It is increasingly recognized that epilepsy affects human brain organization across multiple scales, ranging from cellular alterations in specific regions towards macroscale network imbalances. My talk will overview an emerging paradigm that integrates cellular, neuroimaging, and network modelling approaches to faithful characterize the extent of structural and functional alterations in the common epilepsies. I will also discuss how multiscale framework can help to derive clinically useful biomarkers of dysfunction, and how these methods may guide surgical planning and prognostics.
Invariant neural subspaces maintained by feedback modulation
This session is a double feature of the Cologne Theoretical Neuroscience Forum and the Institute of Neuroscience and Medicine (INM-6) Computational and Systems Neuroscience of the Jülich Research Center.
Parametric control of flexible timing through low-dimensional neural manifolds
Biological brains possess an exceptional ability to infer relevant behavioral responses to a wide range of stimuli from only a few examples. This capacity to generalize beyond the training set has been proven particularly challenging to realize in artificial systems. How neural processes enable this capacity to extrapolate to novel stimuli is a fundamental open question. A prominent but underexplored hypothesis suggests that generalization is facilitated by a low-dimensional organization of collective neural activity, yet evidence for the underlying neural mechanisms remains wanting. Combining network modeling, theory and neural data analysis, we tested this hypothesis in the framework of flexible timing tasks, which rely on the interplay between inputs and recurrent dynamics. We first trained recurrent neural networks on a set of timing tasks while minimizing the dimensionality of neural activity by imposing low-rank constraints on the connectivity, and compared the performance and generalization capabilities with networks trained without any constraint. We then examined the trained networks, characterized the dynamical mechanisms underlying the computations, and verified their predictions in neural recordings. Our key finding is that low-dimensional dynamics strongly increases the ability to extrapolate to inputs outside of the range used in training. Critically, this capacity to generalize relies on controlling the low-dimensional dynamics by a parametric contextual input. We found that this parametric control of extrapolation was based on a mechanism where tonic inputs modulate the dynamics along non-linear manifolds in activity space while preserving their geometry. Comparisons with neural recordings in the dorsomedial frontal cortex of macaque monkeys performing flexible timing tasks confirmed the geometric and dynamical signatures of this mechanism. Altogether, our results tie together a number of previous experimental findings and suggest that the low-dimensional organization of neural dynamics plays a central role in generalizable behaviors.
Change of mind in rapid free-choice picking scenarios
In a famous philosophical paradox, Buridan's ass perishes because he is equally hungry and thirsty, and cannot make up his mind whether to first drink or eat. We are faced daily with the need to pick between alternatives that are equally attractive (or not) to us. What are the processes that allow us to avoid paralysis and to rapidly select between such equal options when there are no preferences or rational reasons to rely on? One solution that was offered is that although on a higher cognitive level there is symmetry between the alternatives, on a neuronal level the symmetry does not maintain. What is the nature of this asymmetry of the neuronal level? In this talk I will present experiments addressing this important phenomenon using measures of human behavior, EEG, EMG and large scale neural network modeling, and discuss mechanisms involved in the process of intention formation and execution, in the face of alternatives to choose from. Specifically, I will show results revealing the temporal dynamics of rapid intention formation and, moreover, ‘change of intention’ in a free choice picking scenario, in which the alternatives are on a par for the participant. The results suggest that even in arbitrary choices, endogenous or exogenous biases that are present in the neural system for selecting one or another option may be implicitly overruled; thus creating an implicit and non-conscious ‘change of mind’. Finally, the question is raised: in what way do such rapid implicit ‘changes of mind’ help retain one’s self-control and free-will behavior?
Transdiagnostic approaches to understanding neurodevelopment
Macroscopic brain organisation emerges early in life, even prenatally, and continues to develop through adolescence and into early adulthood. The emergence and continual refinement of large-scale brain networks, connecting neuronal populations across anatomical distance, allows for increasing functional integration and specialisation. This process is thought crucial for the emergence of complex cognitive processes. But how and why is this process so diverse? We used structural neuroimaging collected from a large diverse cohort, to explore how different features of macroscopic brain organisation are associated with diverse cognitive trajectories. We used diffusion-weighted imaging (DWI) to construct whole-brain white-matter connectomes. A simulated attack on each child's connectome revealed that some brain networks were strongly organized around highly connected 'hubs'. The more children's brains were critically dependent on hubs, the better their cognitive skills. Conversely, having poorly integrated hubs was a very strong risk factor for cognitive and learning difficulties across the sample. We subsequently developed a computational framework, using generative network modelling (GNM), to model the emergence of this kind of connectome organisation. Relatively subtle changes within the wiring rules of this computational framework give rise to differential developmental trajectories, because of small biases in the preferential wiring properties of different nodes within the network. Finally, we were able to use this GNM to implicate the molecular and cellular processes that govern these different growth patterns.
Emergence of long time scales in data-driven network models of zebrafish activity
How can neural networks exhibit persistent activity on time scales much larger than allowed by cellular properties? We address this question in the context of larval zebrafish, a model vertebrate that is accessible to brain-scale neuronal recording and high-throughput behavioral studies. We study in particular the dynamics of a bilaterally distributed circuit, the so-called ARTR, including hundreds neurons. ARTR exhibits slow antiphasic alternations between its left and right subpopulations, which can be modulated by the water temperature, and drive the coordinated orientation of swim bouts, thus organizing the fish spatial exploration. To elucidate the mechanism leading to the slow self-oscillation, we train a network graphical model (Ising) on neural recordings. Sampling the inferred model allows us to generate synthetic oscillatory activity, whose features correctly capture the observed dynamics. A mean-field analysis of the inferred model reveals the existence several phases; activated crossing of the barriers in between those phases controls the long time scales present in the network oscillations. We show in particular how the barrier heights and the nature of the phases vary with the water temperature.
Is it Autism or Alexithymia? explaining atypical socioemotional processing
Emotion processing is thought to be impaired in autism and linked to atypical visual exploration and arousal modulation to others faces and gaze, yet evidence is equivocal. We propose that, where observed, atypical socioemotional processing is due to alexithymia, a distinct but frequently co-occurring condition which affects emotional self-awareness and Interoception. In study 1 (N = 80), we tested this hypothesis by studying the spatio-temporal dynamics and entropy of eye-gaze during emotion processing tasks. Evidence from traditional and novel methods revealed that atypical eye-gaze and emotion recognition is best predicted by alexithymia in both autistic and non-autistic individuals. In Study 2 (N = 70), we assessed interoceptive and autonomic signals implicated in socioemotional processing, and found evidence for alexithymia (not autism) driven effects on gaze and arousal modulation to emotions. We also conducted two large-scale studies (N = 1300), using confirmatory factor-analytic and network modelling and found evidence that Alexithymia and Autism are distinct at both a latent level and their intercorrelations. We argue that: 1) models of socioemotional processing in autism should conceptualise difficulties as intrinsic to alexithymia, and 2) assessment of alexithymia is crucial for diagnosis and personalised interventions in autism.
Recurrent network models of adaptive and maladaptive learning
During periods of persistent and inescapable stress, animals can switch from active to passive coping strategies to manage effort-expenditure. Such normally adaptive behavioural state transitions can become maladaptive in disorders such as depression. We developed a new class of multi-region recurrent neural network (RNN) models to infer brain-wide interactions driving such maladaptive behaviour. The models were trained to match experimental data across two levels simultaneously: brain-wide neural dynamics from 10-40,000 neurons and the realtime behaviour of the fish. Analysis of the trained RNN models revealed a specific change in inter-area connectivity between the habenula (Hb) and raphe nucleus during the transition into passivity. We then characterized the multi-region neural dynamics underlying this transition. Using the interaction weights derived from the RNN models, we calculated the input currents from different brain regions to each Hb neuron. We then computed neural manifolds spanning these input currents across all Hb neurons to define subspaces within the Hb activity that captured communication with each other brain region independently. At the onset of stress, there was an immediate response within the Hb/raphe subspace alone. However, RNN models identified no early or fast-timescale change in the strengths of interactions between these regions. As the animal lapsed into passivity, the responses within the Hb/raphe subspace decreased, accompanied by a concomitant change in the interactions between the raphe and Hb inferred from the RNN weights. This innovative combination of network modeling and neural dynamics analysis points to dual mechanisms with distinct timescales driving the behavioural state transition: early response to stress is mediated by reshaping the neural dynamics within a preserved network architecture, while long-term state changes correspond to altered connectivity between neural ensembles in distinct brain regions.
Adolescent maturation of cortical excitation-inhibition balance based on individualized biophysical network modeling
Bernstein Conference 2024
cuBNM: GPU-Accelerated Biophysical Network Modeling
Bernstein Conference 2024
Rapid prototyping in spiking neural network modeling with NESTML and NEST Desktop
Bernstein Conference 2024
Deep neural network modeling of a visually-guided social behavior
COSYNE 2022