← Back

Neural Decoding

Topic spotlight
TopicWorld Wide

neural decoding

Discover seminars, jobs, and research tagged with neural decoding across World Wide.
6 curated items4 ePosters2 Seminars
Updated almost 2 years ago
6 items · neural decoding
6 results
SeminarNeuroscience

Trends in NeuroAI - Unified Scalable Neural Decoding (POYO)

Mehdi Azabou
Feb 21, 2024

Lead author Mehdi Azabou will present on his work "POYO-1: A Unified, Scalable Framework for Neural Population Decoding" (https://poyo-brain.github.io/). Mehdi is an ML PhD student at Georgia Tech advised by Dr. Eva Dyer. Paper link: https://arxiv.org/abs/2310.16046 Trends in NeuroAI is a reading group hosted by the MedARC Neuroimaging & AI lab (https://medarc.ai/fmri | https://groups.google.com/g/medarc-fmri).

SeminarNeuroscienceRecording

Neural mechanisms of active vision in the marmoset monkey

Jude Mitchell
University of Rochester
May 11, 2021

Human vision relies on rapid eye movements (saccades) 2-3 times every second to bring peripheral targets to central foveal vision for high resolution inspection. This rapid sampling of the world defines the perception-action cycle of natural vision and profoundly impacts our perception. Marmosets have similar visual processing and eye movements as humans, including a fovea that supports high-acuity central vision. Here, I present a novel approach developed in my laboratory for investigating the neural mechanisms of visual processing using naturalistic free viewing and simple target foraging paradigms. First, we establish that it is possible to map receptive fields in the marmoset with high precision in visual areas V1 and MT without constraints on fixation of the eyes. Instead, we use an off-line correction for eye position during foraging combined with high resolution eye tracking. This approach allows us to simultaneously map receptive fields, even at the precision of foveal V1 neurons, while also assessing the impact of eye movements on the visual information encoded. We find that the visual information encoded by neurons varies dramatically across the saccade to fixation cycle, with most information localized to brief post-saccadic transients. In a second study we examined if target selection prior to saccades can predictively influence how foveal visual information is subsequently processed in post-saccadic transients. Because every saccade brings a target to the fovea for detailed inspection, we hypothesized that predictive mechanisms might prime foveal populations to process the target. Using neural decoding from laminar arrays placed in foveal regions of area MT, we find that the direction of motion for a fixated target can be predictively read out from foveal activity even before its post-saccadic arrival. These findings highlight the dynamic and predictive nature of visual processing during eye movements and the utility of the marmoset as a model of active vision. Funding sources: NIH EY030998 to JM, Life Sciences Fellowship to JY

ePoster

Neural Decoding of Temporal Features of Zebra Finch Song

Amirmasoud Ahmadi, Hermina Robotka, Frederic Theunissen, Manfred Gahr

Bernstein Conference 2024

ePoster

Synaptic diversity naturally arises from neural decoding of heterogeneous populations

COSYNE 2022

ePoster

Synaptic diversity naturally arises from neural decoding of heterogeneous populations

COSYNE 2022

ePoster

Density-based Neural Decoding using Spike Localization for Neuropixels Recordings

Yizi Zhang, Tianxiao He, Julien Boussard, Cole Hurwitz, Erdem Varol, Charlie Windolf, Olivier Winter, Matt Whiteway, The International Brain Lab The International Brain Lab, Liam Paninski

COSYNE 2023