Neural
neural heterogeneity
NMC4 Short Talk: Resilience through diversity: Loss of neuronal heterogeneity in epileptogenic human tissue impairs network resilience to sudden changes in synchrony
A myriad of pathological changes associated with epilepsy, including the loss of specific cell types, improper expression of individual ion channels, and synaptic sprouting, can be recast as decreases in cell and circuit heterogeneity. In recent experimental work, we demonstrated that biophysical diversity is a key characteristic of human cortical pyramidal cells, and past theoretical work has shown that neuronal heterogeneity improves a neural circuit’s ability to encode information. Viewed alongside the fact that seizure is an information-poor brain state, these findings motivate the hypothesis that epileptogenesis can be recontextualized as a process where reduction in cellular heterogeneity renders neural circuits less resilient to seizure onset. By comparing whole-cell patch clamp recordings from layer 5 (L5) human cortical pyramidal neurons from epileptogenic and non-epileptogenic tissue, we present the first direct experimental evidence that a significant reduction in neural heterogeneity accompanies epilepsy. We directly implement experimentally-obtained heterogeneity levels in cortical excitatory-inhibitory (E-I) stochastic spiking network models. Low heterogeneity networks display unique dynamics typified by a sudden transition into a hyper-active and synchronous state paralleling ictogenesis. Mean-field analysis reveals a distinct mathematical structure in these networks distinguished by multi-stability. Furthermore, the mathematically characterized linearizing effect of heterogeneity on input-output response functions explains the counter-intuitive experimentally observed reduction in single-cell excitability in epileptogenic neurons. This joint experimental, computational, and mathematical study showcases that decreased neuronal heterogeneity exists in epileptogenic human cortical tissue, that this difference yields dynamical changes in neural networks paralleling ictogenesis, and that there is a fundamental explanation for these dynamics based in mathematically characterized effects of heterogeneity. These interdisciplinary results provide convincing evidence that biophysical diversity imbues neural circuits with resilience to seizure and a new lens through which to view epilepsy, the most common serious neurological disorder in the world, that could reveal new targets for clinical treatment.
Understanding the role of neural heterogeneity in learning
The brain has a hugely diverse and heterogeneous nature. The exact role of heterogeneity has been relatively little explored as most neural models tend to be largely homogeneous. We trained spiking neural networks with varying degrees of heterogeneity on complex real-world tasks and found that heterogeneity resulted in more stable and robust training and improved training performance, especially for tasks with a higher temporal structure. Moreover, the optimal distribution of parameters found by training was found to be similar to experimental observations. These findings suggest that heterogeneity is not simply a result of noisy biological processes, but it may play a crucial role for learning in complex, changing environments.
Neural heterogeneity promotes robust learning
The brain has a hugely diverse, heterogeneous structure. By contrast, many functional neural models are homogeneous. We compared the performance of spiking neural networks trained to carry out difficult tasks, with varying degrees of heterogeneity. Introducing heterogeneity in membrane and synapse time constants substantially improved task performance, and made learning more stable and robust across multiple training methods, particularly for tasks with a rich temporal structure. In addition, the distribution of time constants in the trained networks closely matches those observed experimentally. We suggest that the heterogeneity observed in the brain may be more than just the byproduct of noisy processes, but rather may serve an active and important role in allowing animals to learn in changing environments.
Effects of Neural Heterogeneity on the Low-Dimensional Dynamics of Spiking Neural Networks
COSYNE 2023