Neural Imaging
neural imaging
Computational Imaging: Augmenting Optics with Algorithms for Biomedical Microscopy and Neural Imaging
Computational imaging seeks to achieve novel capabilities and overcome conventional limitations by combining optics and algorithms. In this seminar, I will discuss two computational imaging technologies developed in Boston University Computational Imaging Systems lab, including Intensity Diffraction Tomography and Computational Miniature Mesoscope. In our intensity diffraction tomography system, we demonstrate 3D quantitative phase imaging on a simple LED array microscope. We develop both single-scattering and multiple-scattering models to image complex biological samples. In our Computational Miniature Mesoscope, we demonstrate single-shot 3D high-resolution fluorescence imaging across a wide field-of-view in a miniaturized platform. We develop methods to characterize 3D spatially varying aberrations and physical simulator-based deep learning strategies to achieve fast and accurate reconstructions. Broadly, I will discuss how synergies between novel optical instrumentation, physical modeling, and model- and learning-based computational algorithms can push the limits in biomedical microscopy and neural imaging.
Rastermap: Extracting structure from high dimensional neural data
Large-scale neural recordings contain high-dimensional structure that cannot be easily captured by existing data visualization methods. We therefore developed an embedding algorithm called Rastermap, which captures highly nonlinear relationships between neurons, and provides useful visualizations by assigning each neuron to a location in the embedding space. Compared to standard algorithms such as t-SNE and UMAP, Rastermap finds finer and higher dimensional patterns of neural variability, as measured by quantitative benchmarks. We applied Rastermap to a variety of datasets, including spontaneous neural activity, neural activity during a virtual reality task, widefield neural imaging data during a 2AFC task, artificial neural activity from an agent playing atari games, and neural responses to visual textures. We found within these datasets unique subpopulations of neurons encoding abstract properties of the environment.
Magnetic detection electrical impedance tomography (MDEIT) for non-invasive neural imaging
FENS Forum 2024