← Back

Neural Subspaces

Topic spotlight
TopicWorld Wide

neural subspaces

Discover seminars, jobs, and research tagged with neural subspaces across World Wide.
7 curated items4 Seminars3 ePosters
Updated 10 months ago
7 items · neural subspaces
7 results
SeminarNeuroscience

Unifying the mechanisms of hippocampal episodic memory and prefrontal working memory

James Whittington
Stanford University / University of Oxford
Feb 13, 2024

Remembering events in the past is crucial to intelligent behaviour. Flexible memory retrieval, beyond simple recall, requires a model of how events relate to one another. Two key brain systems are implicated in this process: the hippocampal episodic memory (EM) system and the prefrontal working memory (WM) system. While an understanding of the hippocampal system, from computation to algorithm and representation, is emerging, less is understood about how the prefrontal WM system can give rise to flexible computations beyond simple memory retrieval, and even less is understood about how the two systems relate to each other. Here we develop a mathematical theory relating the algorithms and representations of EM and WM by showing a duality between storing memories in synapses versus neural activity. In doing so, we develop a formal theory of the algorithm and representation of prefrontal WM as structured, and controllable, neural subspaces (termed activity slots). By building models using this formalism, we elucidate the differences, similarities, and trade-offs between the hippocampal and prefrontal algorithms. Lastly, we show that several prefrontal representations in tasks ranging from list learning to cue dependent recall are unified as controllable activity slots. Our results unify frontal and temporal representations of memory, and offer a new basis for understanding the prefrontal representation of WM

SeminarNeuroscience

Invariant neural subspaces maintained by feedback modulation

Laura Naumann
Bernstein Center for Computational Neuroscience, Berlin
Jul 13, 2022

This session is a double feature of the Cologne Theoretical Neuroscience Forum and the Institute of Neuroscience and Medicine (INM-6) Computational and Systems Neuroscience of the Jülich Research Center.

SeminarNeuroscienceRecording

Invariant neural subspaces maintained by feedback modulation

Henning Sprekeler
TU Berlin
Feb 17, 2022

Sensory systems reliably process incoming stimuli in spite of changes in context. Most recent models accredit this context invariance to an extraction of increasingly complex sensory features in hierarchical feedforward networks. Here, we study how context-invariant representations can be established by feedback rather than feedforward processing. We show that feedforward neural networks modulated by feedback can dynamically generate invariant sensory representations. The required feedback can be implemented as a slow and spatially diffuse gain modulation. The invariance is not present on the level of individual neurons, but emerges only on the population level. Mechanistically, the feedback modulation dynamically reorients the manifold of neural activity and thereby maintains an invariant neural subspace in spite of contextual variations. Our results highlight the importance of population-level analyses for understanding the role of feedback in flexible sensory processing.

ePoster

Dimensionality reduction beyond neural subspaces

N. Alex Cayco-Gajic

Bernstein Conference 2024

ePoster

Invariant neural subspaces maintained by feedback modulation

COSYNE 2022

ePoster

Invariant neural subspaces maintained by feedback modulation

COSYNE 2022