Neuroai
NeuroAI
Prof Grace Lindsay
I will be looking for students through the Cognition and Perception program at NYU: https://as.nyu.edu/departments/psychology/graduate/phd-cognition-perception.html Projects will fit into the research descriptions provided here: https://lindsay-lab.github.io/research/
Cian O’Donnell
We are looking for a computational neuroscience PhD student for a project on “NeuroAI approaches to understanding inter-individual differences in cognition and psychiatric disorders.” The goal is to use populations of deep neural networks as a simple model for populations of human brains, combined with models from evolutionary genetics, to understand the principles underlying the mapping from genotypes to cognitive phenotypes.
Prof. Baihan Lin
📢 Join the Lin Lab at Mount Sinai! We’re Hiring Postdocs, Research Assistants, and PhD Students! The Lin Lab, also known as the Bytes of Minds Lab, is on the lookout for driven researchers passionate about Computational Psychiatry and Neuro-AI. Directed by Dr. Baihan Lin (me!) and based at the Icahn School of Medicine at Mount Sinai, New York’s largest hospital network, our lab is uniquely positioned with access to vast data resources and a strong collaborative environment. We’re pushing the boundaries of mental health technology and brain-inspired AI to create intelligent systems that can transform healthcare and deepen our understanding of the mind. Why Join Us? 🍎 Cutting-edge Research: Tackle challenges in neuro-inspired AI, computational psychiatry, brain-computer interfaces, extended realities (XR), social media, wearables, and beyond. 🍎 Interdisciplinary Impact: Work at the intersection of advanced neuroscience, machine learning, and cognitive science to create adaptive AI systems, new tools for mental health, and next-gen neurotechnology. 🍎 Top-Tier Environment: Join Mount Sinai’s dynamic research community, within New York’s largest health system with the most diverse patient populations and a leading hub for AI in healthcare (ranked #1 by Nature). Whether you're a potential postdoc, PhD student, or someone looking for an interdisciplinary research experience, if you’re passionate about bridging the gap between bytes and minds, we want to hear from you! Learn more at linlab.org and apply by emailing me at baihan.lin@mssm.edu. Bytes of Minds Lab (Lin Lab) Departments of AI, Psychiatry, and Neuroscience Hasso Plattner Institute for Digital Health, Friedman Brain Institute, Center for Computational Psychiatry
Understanding reward-guided learning using large-scale datasets
Understanding the neural mechanisms of reward-guided learning is a long-standing goal of computational neuroscience. Recent methodological innovations enable us to collect ever larger neural and behavioral datasets. This presents opportunities to achieve greater understanding of learning in the brain at scale, as well as methodological challenges. In the first part of the talk, I will discuss our recent insights into the mechanisms by which zebra finch songbirds learn to sing. Dopamine has been long thought to guide reward-based trial-and-error learning by encoding reward prediction errors. However, it is unknown whether the learning of natural behaviours, such as developmental vocal learning, occurs through dopamine-based reinforcement. Longitudinal recordings of dopamine and bird songs reveal that dopamine activity is indeed consistent with encoding a reward prediction error during naturalistic learning. In the second part of the talk, I will talk about recent work we are doing at DeepMind to develop tools for automatically discovering interpretable models of behavior directly from animal choice data. Our method, dubbed CogFunSearch, uses LLMs within an evolutionary search process in order to "discover" novel models in the form of Python programs that excel at accurately predicting animal behavior during reward-guided learning. The discovered programs reveal novel patterns of learning and choice behavior that update our understanding of how the brain solves reinforcement learning problems.
Neurobiological constraints on learning: bug or feature?
Understanding how brains learn requires bridging evidence across scales—from behaviour and neural circuits to cells, synapses, and molecules. In our work, we use computational modelling and data analysis to explore how the physical properties of neurons and neural circuits constrain learning. These include limits imposed by brain wiring, energy availability, molecular noise, and the 3D structure of dendritic spines. In this talk I will describe one such project testing if wiring motifs from fly brain connectomes can improve performance of reservoir computers, a type of recurrent neural network. The hope is that these insights into brain learning will lead to improved learning algorithms for artificial systems.
Understanding reward-guided learning using large-scale datasets
Understanding the neural mechanisms of reward-guided learning is a long-standing goal of computational neuroscience. Recent methodological innovations enable us to collect ever larger neural and behavioral datasets. This presents opportunities to achieve greater understanding of learning in the brain at scale, as well as methodological challenges. In the first part of the talk, I will discuss our recent insights into the mechanisms by which zebra finch songbirds learn to sing. Dopamine has been long thought to guide reward-based trial-and-error learning by encoding reward prediction errors. However, it is unknown whether the learning of natural behaviours, such as developmental vocal learning, occurs through dopamine-based reinforcement. Longitudinal recordings of dopamine and bird songs reveal that dopamine activity is indeed consistent with encoding a reward prediction error during naturalistic learning. In the second part of the talk, I will talk about recent work we are doing at DeepMind to develop tools for automatically discovering interpretable models of behavior directly from animal choice data. Our method, dubbed CogFunSearch, uses LLMs within an evolutionary search process in order to "discover" novel models in the form of Python programs that excel at accurately predicting animal behavior during reward-guided learning. The discovered programs reveal novel patterns of learning and choice behavior that update our understanding of how the brain solves reinforcement learning problems.
Relating circuit dynamics to computation: robustness and dimension-specific computation in cortical dynamics
Neural dynamics represent the hard-to-interpret substrate of circuit computations. Advances in large-scale recordings have highlighted the sheer spatiotemporal complexity of circuit dynamics within and across circuits, portraying in detail the difficulty of interpreting such dynamics and relating it to computation. Indeed, even in extremely simplified experimental conditions, one observes high-dimensional temporal dynamics in the relevant circuits. This complexity can be potentially addressed by the notion that not all changes in population activity have equal meaning, i.e., a small change in the evolution of activity along a particular dimension may have a bigger effect on a given computation than a large change in another. We term such conditions dimension-specific computation. Considering motor preparatory activity in a delayed response task we utilized neural recordings performed simultaneously with optogenetic perturbations to probe circuit dynamics. First, we revealed a remarkable robustness in the detailed evolution of certain dimensions of the population activity, beyond what was thought to be the case experimentally and theoretically. Second, the robust dimension in activity space carries nearly all of the decodable behavioral information whereas other non-robust dimensions contained nearly no decodable information, as if the circuit was setup to make informative dimensions stiff, i.e., resistive to perturbations, leaving uninformative dimensions sloppy, i.e., sensitive to perturbations. Third, we show that this robustness can be achieved by a modular organization of circuitry, whereby modules whose dynamics normally evolve independently can correct each other’s dynamics when an individual module is perturbed, a common design feature in robust systems engineering. Finally, we will recent work extending this framework to understanding the neural dynamics underlying preparation of speech.
Cognitive maps as expectations learned across episodes – a model of the two dentate gyrus blades
How can the hippocampal system transition from episodic one-shot learning to a multi-shot learning regime and what is the utility of the resultant neural representations? This talk will explore the role of the dentate gyrus (DG) anatomy in this context. The canonical DG model suggests it performs pattern separation. More recent experimental results challenge this standard model, suggesting DG function is more complex and also supports the precise binding of objects and events to space and the integration of information across episodes. Very recent studies attribute pattern separation and pattern integration to anatomically distinct parts of the DG (the suprapyramidal blade vs the infrapyramidal blade). We propose a computational model that investigates this distinction. In the model the two processing streams (potentially localized in separate blades) contribute to the storage of distinct episodic memories, and the integration of information across episodes, respectively. The latter forms generalized expectations across episodes, eventually forming a cognitive map. We train the model with two data sets, MNIST and plausible entorhinal cortex inputs. The comparison between the two streams allows for the calculation of a prediction error, which can drive the storage of poorly predicted memories and the forgetting of well-predicted memories. We suggest that differential processing across the DG aids in the iterative construction of spatial cognitive maps to serve the generation of location-dependent expectations, while at the same time preserving episodic memory traces of idiosyncratic events.
Neural architectures: what are they good for anyway?
The brain has a highly complex structure in terms of cell types and wiring between different regions. What is it for, if anything? I'll start this talk by asking what might an answer to this question even look like given that we can't run an alternative universe where our brains are structured differently. (Preview: we can do this with models!) I'll then talk about some of our work in two areas: (1) does the modular structure of the brain contribute to specialisation of function? (2) how do different cell types and architectures contribute to multimodal sensory processing?
Dimensionality reduction beyond neural subspaces
Over the past decade, neural representations have been studied from the lens of low-dimensional subspaces defined by the co-activation of neurons. However, this view has overlooked other forms of covarying structure in neural activity, including i) condition-specific high-dimensional neural sequences, and ii) representations that change over time due to learning or drift. In this talk, I will present a new framework that extends the classic view towards additional types of covariability that are not constrained to a fixed, low-dimensional subspace. In addition, I will present sliceTCA, a new tensor decomposition that captures and demixes these different types of covariability to reveal task-relevant structure in neural activity. Finally, I will close with some thoughts regarding the circuit mechanisms that could generate mixed covariability. Together this work points to a need to consider new possibilities for how neural populations encode sensory, cognitive, and behavioral variables beyond neural subspaces.
Brain-Wide Compositionality and Learning Dynamics in Biological Agents
Biological agents continually reconcile the internal states of their brain circuits with incoming sensory and environmental evidence to evaluate when and how to act. The brains of biological agents, including animals and humans, exploit many evolutionary innovations, chiefly modularity—observable at the level of anatomically-defined brain regions, cortical layers, and cell types among others—that can be repurposed in a compositional manner to endow the animal with a highly flexible behavioral repertoire. Accordingly, their behaviors show their own modularity, yet such behavioral modules seldom correspond directly to traditional notions of modularity in brains. It remains unclear how to link neural and behavioral modularity in a compositional manner. We propose a comprehensive framework—compositional modes—to identify overarching compositionality spanning specialized submodules, such as brain regions. Our framework directly links the behavioral repertoire with distributed patterns of population activity, brain-wide, at multiple concurrent spatial and temporal scales. Using whole-brain recordings of zebrafish brains, we introduce an unsupervised pipeline based on neural network models, constrained by biological data, to reveal highly conserved compositional modes across individuals despite the naturalistic (spontaneous or task-independent) nature of their behaviors. These modes provided a scaffolding for other modes that account for the idiosyncratic behavior of each fish. We then demonstrate experimentally that compositional modes can be manipulated in a consistent manner by behavioral and pharmacological perturbations. Our results demonstrate that even natural behavior in different individuals can be decomposed and understood using a relatively small number of neurobehavioral modules—the compositional modes—and elucidate a compositional neural basis of behavior. This approach aligns with recent progress in understanding how reasoning capabilities and internal representational structures develop over the course of learning or training, offering insights into the modularity and flexibility in artificial and biological agents.
Use case determines the validity of neural systems comparisons
Deep learning provides new data-driven tools to relate neural activity to perception and cognition, aiding scientists in developing theories of neural computation that increasingly resemble biological systems both at the level of behavior and of neural activity. But what in a deep neural network should correspond to what in a biological system? This question is addressed implicitly in the use of comparison measures that relate specific neural or behavioral dimensions via a particular functional form. However, distinct comparison methodologies can give conflicting results in recovering even a known ground-truth model in an idealized setting, leaving open the question of what to conclude from the outcome of a systems comparison using any given methodology. Here, we develop a framework to make explicit and quantitative the effect of both hypothesis-driven aspects—such as details of the architecture of a deep neural network—as well as methodological choices in a systems comparison setting. We demonstrate via the learning dynamics of deep neural networks that, while the role of the comparison methodology is often de-emphasized relative to hypothesis-driven aspects, this choice can impact and even invert the conclusions to be drawn from a comparison between neural systems. We provide evidence that the right way to adjudicate a comparison depends on the use case—the scientific hypothesis under investigation—which could range from identifying single-neuron or circuit-level correspondences to capturing generalizability to new stimulus properties
Probing neural population dynamics with recurrent neural networks
Large-scale recordings of neural activity are providing new opportunities to study network-level dynamics with unprecedented detail. However, the sheer volume of data and its dynamical complexity are major barriers to uncovering and interpreting these dynamics. I will present latent factor analysis via dynamical systems, a sequential autoencoding approach that enables inference of dynamics from neuronal population spiking activity on single trials and millisecond timescales. I will also discuss recent adaptations of the method to uncover dynamics from neural activity recorded via 2P Calcium imaging. Finally, time permitting, I will mention recent efforts to improve the interpretability of deep-learning based dynamical systems models.
Trends in NeuroAI - Brain-like topography in transformers (Topoformer)
Dr. Nicholas Blauch will present on his work "Topoformer: Brain-like topographic organization in transformer language models through spatial querying and reweighting". Dr. Blauch is a postdoctoral fellow in the Harvard Vision Lab advised by Talia Konkle and George Alvarez. Paper link: https://openreview.net/pdf?id=3pLMzgoZSA Trends in NeuroAI is a reading group hosted by the MedARC Neuroimaging & AI lab (https://medarc.ai/fmri | https://groups.google.com/g/medarc-fmri).
Generative models for video games (rescheduled)
Developing agents capable of modeling complex environments and human behaviors within them is a key goal of artificial intelligence research. Progress towards this goal has exciting potential for applications in video games, from new tools that empower game developers to realize new creative visions, to enabling new kinds of immersive player experiences. This talk focuses on recent advances of my team at Microsoft Research towards scalable machine learning architectures that effectively capture human gameplay data. In the first part of my talk, I will focus on diffusion models as generative models of human behavior. Previously shown to have impressive image generation capabilities, I present insights that unlock applications to imitation learning for sequential decision making. In the second part of my talk, I discuss a recent project taking ideas from language modeling to build a generative sequence model of an Xbox game.
Modelling the fruit fly brain and body
Through recent advances in microscopy, we now have an unprecedented view of the brain and body of the fruit fly Drosophila melanogaster. We now know the connectivity at single neuron resolution across the whole brain. How do we translate these new measurements into a deeper understanding of how the brain processes sensory information and produces behavior? I will describe two computational efforts to model the brain and the body of the fruit fly. First, I will describe a new modeling method which makes highly accurate predictions of neural activity in the fly visual system as measured in the living brain, using only measurements of its connectivity from a dead brain [1], joint work with Jakob Macke. Second, I will describe a whole body physics simulation of the fruit fly which can accurately reproduce its locomotion behaviors, both flight and walking [2], joint work with Google DeepMind.
Generative models for video games
Developing agents capable of modeling complex environments and human behaviors within them is a key goal of artificial intelligence research. Progress towards this goal has exciting potential for applications in video games, from new tools that empower game developers to realize new creative visions, to enabling new kinds of immersive player experiences. This talk focuses on recent advances of my team at Microsoft Research towards scalable machine learning architectures that effectively capture human gameplay data. In the first part of my talk, I will focus on diffusion models as generative models of human behavior. Previously shown to have impressive image generation capabilities, I present insights that unlock applications to imitation learning for sequential decision making. In the second part of my talk, I discuss a recent project taking ideas from language modeling to build a generative sequence model of an Xbox game.
Maintaining Plasticity in Neural Networks
Nonstationarity presents a variety of challenges for machine learning systems. One surprising pathology which can arise in nonstationary learning problems is plasticity loss, whereby making progress on new learning objectives becomes more difficult as training progresses. Networks which are unable to adapt in response to changes in their environment experience plateaus or even declines in performance in highly non-stationary domains such as reinforcement learning, where the learner must quickly adapt to new information even after hundreds of millions of optimization steps. The loss of plasticity manifests in a cluster of related empirical phenomena which have been identified by a number of recent works, including the primacy bias, implicit under-parameterization, rank collapse, and capacity loss. While this phenomenon is widely observed, it is still not fully understood. This talk will present exciting recent results which shed light on the mechanisms driving the loss of plasticity in a variety of learning problems and survey methods to maintain network plasticity in non-stationary tasks, with a particular focus on deep reinforcement learning.
Trends in NeuroAI - Unified Scalable Neural Decoding (POYO)
Lead author Mehdi Azabou will present on his work "POYO-1: A Unified, Scalable Framework for Neural Population Decoding" (https://poyo-brain.github.io/). Mehdi is an ML PhD student at Georgia Tech advised by Dr. Eva Dyer. Paper link: https://arxiv.org/abs/2310.16046 Trends in NeuroAI is a reading group hosted by the MedARC Neuroimaging & AI lab (https://medarc.ai/fmri | https://groups.google.com/g/medarc-fmri).
Unifying the mechanisms of hippocampal episodic memory and prefrontal working memory
Remembering events in the past is crucial to intelligent behaviour. Flexible memory retrieval, beyond simple recall, requires a model of how events relate to one another. Two key brain systems are implicated in this process: the hippocampal episodic memory (EM) system and the prefrontal working memory (WM) system. While an understanding of the hippocampal system, from computation to algorithm and representation, is emerging, less is understood about how the prefrontal WM system can give rise to flexible computations beyond simple memory retrieval, and even less is understood about how the two systems relate to each other. Here we develop a mathematical theory relating the algorithms and representations of EM and WM by showing a duality between storing memories in synapses versus neural activity. In doing so, we develop a formal theory of the algorithm and representation of prefrontal WM as structured, and controllable, neural subspaces (termed activity slots). By building models using this formalism, we elucidate the differences, similarities, and trade-offs between the hippocampal and prefrontal algorithms. Lastly, we show that several prefrontal representations in tasks ranging from list learning to cue dependent recall are unified as controllable activity slots. Our results unify frontal and temporal representations of memory, and offer a new basis for understanding the prefrontal representation of WM
Trends in NeuroAI - Meta's MEG-to-image reconstruction
Trends in NeuroAI is a reading group hosted by the MedARC Neuroimaging & AI lab (https://medarc.ai/fmri). Title: Brain-optimized inference improves reconstructions of fMRI brain activity Abstract: The release of large datasets and developments in AI have led to dramatic improvements in decoding methods that reconstruct seen images from human brain activity. We evaluate the prospect of further improving recent decoding methods by optimizing for consistency between reconstructions and brain activity during inference. We sample seed reconstructions from a base decoding method, then iteratively refine these reconstructions using a brain-optimized encoding model that maps images to brain activity. At each iteration, we sample a small library of images from an image distribution (a diffusion model) conditioned on a seed reconstruction from the previous iteration. We select those that best approximate the measured brain activity when passed through our encoding model, and use these images for structural guidance during the generation of the small library in the next iteration. We reduce the stochasticity of the image distribution at each iteration, and stop when a criterion on the "width" of the image distribution is met. We show that when this process is applied to recent decoding methods, it outperforms the base decoding method as measured by human raters, a variety of image feature metrics, and alignment to brain activity. These results demonstrate that reconstruction quality can be significantly improved by explicitly aligning decoding distributions to brain activity distributions, even when the seed reconstruction is output from a state-of-the-art decoding algorithm. Interestingly, the rate of refinement varies systematically across visual cortex, with earlier visual areas generally converging more slowly and preferring narrower image distributions, relative to higher-level brain areas. Brain-optimized inference thus offers a succinct and novel method for improving reconstructions and exploring the diversity of representations across visual brain areas. Speaker: Reese Kneeland is a Ph.D. student at the University of Minnesota working in the Naselaris lab. Paper link: https://arxiv.org/abs/2312.07705
Trends in NeuroAI - Meta's MEG-to-image reconstruction
Trends in NeuroAI is a reading group hosted by the MedARC Neuroimaging & AI lab (https://medarc.ai/fmri). This will be an informal journal club presentation, we do not have an author of the paper joining us. Title: Brain decoding: toward real-time reconstruction of visual perception Abstract: In the past five years, the use of generative and foundational AI systems has greatly improved the decoding of brain activity. Visual perception, in particular, can now be decoded from functional Magnetic Resonance Imaging (fMRI) with remarkable fidelity. This neuroimaging technique, however, suffers from a limited temporal resolution (≈0.5 Hz) and thus fundamentally constrains its real-time usage. Here, we propose an alternative approach based on magnetoencephalography (MEG), a neuroimaging device capable of measuring brain activity with high temporal resolution (≈5,000 Hz). For this, we develop an MEG decoding model trained with both contrastive and regression objectives and consisting of three modules: i) pretrained embeddings obtained from the image, ii) an MEG module trained end-to-end and iii) a pretrained image generator. Our results are threefold: Firstly, our MEG decoder shows a 7X improvement of image-retrieval over classic linear decoders. Second, late brain responses to images are best decoded with DINOv2, a recent foundational image model. Third, image retrievals and generations both suggest that MEG signals primarily contain high-level visual features, whereas the same approach applied to 7T fMRI also recovers low-level features. Overall, these results provide an important step towards the decoding - in real time - of the visual processes continuously unfolding within the human brain. Speaker: Dr. Paul Scotti (Stability AI, MedARC) Paper link: https://arxiv.org/abs/2310.19812
Trends in NeuroAI - SwiFT: Swin 4D fMRI Transformer
Trends in NeuroAI is a reading group hosted by the MedARC Neuroimaging & AI lab (https://medarc.ai/fmri). Title: SwiFT: Swin 4D fMRI Transformer Abstract: Modeling spatiotemporal brain dynamics from high-dimensional data, such as functional Magnetic Resonance Imaging (fMRI), is a formidable task in neuroscience. Existing approaches for fMRI analysis utilize hand-crafted features, but the process of feature extraction risks losing essential information in fMRI scans. To address this challenge, we present SwiFT (Swin 4D fMRI Transformer), a Swin Transformer architecture that can learn brain dynamics directly from fMRI volumes in a memory and computation-efficient manner. SwiFT achieves this by implementing a 4D window multi-head self-attention mechanism and absolute positional embeddings. We evaluate SwiFT using multiple large-scale resting-state fMRI datasets, including the Human Connectome Project (HCP), Adolescent Brain Cognitive Development (ABCD), and UK Biobank (UKB) datasets, to predict sex, age, and cognitive intelligence. Our experimental outcomes reveal that SwiFT consistently outperforms recent state-of-the-art models. Furthermore, by leveraging its end-to-end learning capability, we show that contrastive loss-based self-supervised pre-training of SwiFT can enhance performance on downstream tasks. Additionally, we employ an explainable AI method to identify the brain regions associated with sex classification. To our knowledge, SwiFT is the first Swin Transformer architecture to process dimensional spatiotemporal brain functional data in an end-to-end fashion. Our work holds substantial potential in facilitating scalable learning of functional brain imaging in neuroscience research by reducing the hurdles associated with applying Transformer models to high-dimensional fMRI. Speaker: Junbeom Kwon is a research associate working in Prof. Jiook Cha’s lab at Seoul National University. Paper link: https://arxiv.org/abs/2307.05916
Loss shaping enhances exact gradient learning with EventProp in Spiking Neural Networks
NeuroAI from model to understanding: revealing the emergence of computations from the collective dynamics of interacting neurons
Learning representations of specifics and generalities over time
Understanding our memory system as a generative model
Bridging machine learning and mechanistic modelling
Making sense of large-scale neural and behavioral data
The power of structured representations (and how to learn them)
Amortized inference in mind and brain
Exploiting sensory statistics in decision making
UCL NeuroAI annual half day event (hybrid)
Attention in Psychology, Neuroscience, and Machine Learning
Towards a recipe for physical reasoning in humans and machines
Learning predictive maps in the brain for spatial navigation
Spatial and Perceptual Neuroscience Questions a Roboticist Would Love to Have Answered
Physically Structured Neural Networks for Smooth and Contact Dynamics
Toward Human-like RL
Annual half day event - four speakers and panel discussion
Graph Representation Learning and the Hippocampal-Entorhinal Circuit
The Spatial Memory Pipeline: a deep learning model of egocentric to allocentric understanding in mammalian brains
The brain map of a worm: A multiscale connectome derived from whole-brain volumetric reconstructions
Brains as human-in-the-loop AI systems
Geometric deep learning on graphs and manifolds
Unsupervised deep learning identifies semantic disentanglement in single inferotemporal neurons
Irina is a research scientist at DeepMind, where she works in the Froniers team. Her work aims to bring together insights from the fields of neuroscience and physics to advance general artificial intelligence through improved representation learning. Before joining DeepMind, Irina was a British Psychological Society Undergraduate Award winner for her achievements as an undergraduate student in Experimental Psychology at Westminster University, followed by a DPhil at the Oxford Centre for Computational Neuroscience and Artificial Intelligence, where she focused on understanding the computational principles underlying speech processing in the auditory brain. During her DPhil, Irina also worked on developing poker AI, applying machine learning in the finance sector, and working on speech recognition at Google Research."" https://arxiv.org/pdf/2006.14304.pdf