← Back

Neurofeedback

Topic spotlight
TopicWorld Wide

neurofeedback

Discover seminars, jobs, and research tagged with neurofeedback across World Wide.
10 curated items4 Seminars4 ePosters2 Positions
Updated 1 day ago
10 items · neurofeedback
10 results
Position

Pascal Fries

Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society
Frankfurt, Germany
Dec 5, 2025

The Fries Lab at the Ernst Strüngmann Institute (ESI) in Frankfurt is looking for an enthusiastic postdoctoral project scientist, who is interested in developing novel approaches to human neurotherapy. Modern non-invasive and invasive electrophysiological techniques provide information about the state of the human brain with high bandwidth and temporal resolution. In addition, wearables assess many relevant physiological parameters. The project scientist will use those recordings to develop personalized neurofeedback-based approaches for neurotherapy. Initially, this will focus on healthy human subjects and non-invasive techniques (MEG and EEG). Subsequently, this can lead to the inclusion of diseased human subjects and invasive techniques (ECoG), in collaboration with clinical partners. The position is not a typical postdoctoral position, because its primary focus is on the development of therapeutic approaches. Yet another important focus will be the publication of the obtained scientific advances. The project scientist will join an existing international team with expertise in human and animal electrophysiology, and will be able to use an outstanding infrastructure. For details on the institute and the lab, see: https://www.esi-frankfurt.de/people/pascalfries/

PositionComputational Neuroscience

Dr Claire Cury

Inria
Rennes, France
Dec 5, 2025

This position lies at the interface of signal processing, behavioural neuroscience and neurofeedback. You will be playing with eye-tracking, EDA, EEG and fMRI signals, to find a real-time-like signature of attention/motivation to be used in EEG-fMRI neurofeedback sessions.

SeminarNeuroscienceRecording

Characterizing the causal role of large-scale network interactions in supporting complex cognition

Michal Ramot
Weizmann Inst. of Science
May 6, 2024

Neuroimaging has greatly extended our capacity to study the workings of the human brain. Despite the wealth of knowledge this tool has generated however, there are still critical gaps in our understanding. While tremendous progress has been made in mapping areas of the brain that are specialized for particular stimuli, or cognitive processes, we still know very little about how large-scale interactions between different cortical networks facilitate the integration of information and the execution of complex tasks. Yet even the simplest behavioral tasks are complex, requiring integration over multiple cognitive domains. Our knowledge falls short not only in understanding how this integration takes place, but also in what drives the profound variation in behavior that can be observed on almost every task, even within the typically developing (TD) population. The search for the neural underpinnings of individual differences is important not only philosophically, but also in the service of precision medicine. We approach these questions using a three-pronged approach. First, we create a battery of behavioral tasks from which we can calculate objective measures for different aspects of the behaviors of interest, with sufficient variance across the TD population. Second, using these individual differences in behavior, we identify the neural variance which explains the behavioral variance at the network level. Finally, using covert neurofeedback, we perturb the networks hypothesized to correspond to each of these components, thus directly testing their casual contribution. I will discuss our overall approach, as well as a few of the new directions we are currently pursuing.

SeminarNeuroscience

Doubting the neurofeedback double-blind do participants have residual awareness of experimental purposes in neurofeedback studies?

Timo Kvamme
Aarhus University
Aug 7, 2023

Neurofeedback provides a feedback display which is linked with on-going brain activity and thus allows self-regulation of neural activity in specific brain regions associated with certain cognitive functions and is considered a promising tool for clinical interventions. Recent reviews of neurofeedback have stressed the importance of applying the “double-blind” experimental design where critically the patient is unaware of the neurofeedback treatment condition. An important question then becomes; is double-blind even possible? Or are subjects aware of the purposes of the neurofeedback experiment? – this question is related to the issue of how we assess awareness or the absence of awareness to certain information in human subjects. Fortunately, methods have been developed which employ neurofeedback implicitly, where the subject is claimed to have no awareness of experimental purposes when performing the neurofeedback. Implicit neurofeedback is intriguing and controversial because it runs counter to the first neurofeedback study, which showed a link between awareness of being in a certain brain state and control of the neurofeedback-derived brain activity. Claiming that humans are unaware of a specific type of mental content is a notoriously difficult endeavor. For instance, what was long held as wholly unconscious phenomena, such as dreams or subliminal perception, have been overturned by more sensitive measures which show that degrees of awareness can be detected. In this talk, I will discuss whether we will critically examine the claim that we can know for certain that a neurofeedback experiment was performed in an unconscious manner. I will present evidence that in certain neurofeedback experiments such as manipulations of attention, participants display residual degrees of awareness of experimental contingencies to alter their cognition.

SeminarNeuroscienceRecording

Visualization and manipulation of our perception and imagery by BCI

Takufumi Yanagisawa
Osaka University
Mar 31, 2022

We have been developing Brain-Computer Interface (BCI) using electrocorticography (ECoG) [1] , which is recorded by electrodes implanted on brain surface, and magnetoencephalography (MEG) [2] , which records the cortical activities non-invasively, for the clinical applications. The invasive BCI using ECoG has been applied for severely paralyzed patient to restore the communication and motor function. The non-invasive BCI using MEG has been applied as a neurofeedback tool to modulate some pathological neural activities to treat some neuropsychiatric disorders. Although these techniques have been developed for clinical application, BCI is also an important tool to investigate neural function. For example, motor BCI records some neural activities in a part of the motor cortex to generate some movements of external devices. Although our motor system consists of complex system including motor cortex, basal ganglia, cerebellum, spinal cord and muscles, the BCI affords us to simplify the motor system with exactly known inputs, outputs and the relation of them. We can investigate the motor system by manipulating the parameters in BCI system. Recently, we are developing some BCIs to visualize and manipulate our perception and mental imagery. Although these BCI has been developed for clinical application, the BCI will be useful to understand our neural system to generate the perception and imagery. In this talk, I will introduce our study of phantom limb pain [3] , that is controlled by MEG-BCI, and the development of a communication BCI using ECoG [4] , that enable the subject to visualize the contents of their mental imagery. And I would like to discuss how much we can control our cortical activities that represent our perception and mental imagery. These examples demonstrate that BCI is a promising tool to visualize and manipulate the perception and imagery and to understand our consciousness. References 1. Yanagisawa, T., Hirata, M., Saitoh, Y., Kishima, H., Matsushita, K., Goto, T., Fukuma, R., Yokoi, H., Kamitani, Y., and Yoshimine, T. (2012). Electrocorticographic control of a prosthetic arm in paralyzed patients. AnnNeurol 71, 353-361. 2. Yanagisawa, T., Fukuma, R., Seymour, B., Hosomi, K., Kishima, H., Shimizu, T., Yokoi, H., Hirata, M., Yoshimine, T., Kamitani, Y., et al. (2016). Induced sensorimotor brain plasticity controls pain in phantom limb patients. Nature communications 7, 13209. 3. Yanagisawa, T., Fukuma, R., Seymour, B., Tanaka, M., Hosomi, K., Yamashita, O., Kishima, H., Kamitani, Y., and Saitoh, Y. (2020). BCI training to move a virtual hand reduces phantom limb pain: A randomized crossover trial. Neurology 95, e417-e426. 4. Ryohei Fukuma, Takufumi Yanagisawa, Shinji Nishimoto, Hidenori Sugano, Kentaro Tamura, Shota Yamamoto, Yasushi Iimura, Yuya Fujita, Satoru Oshino, Naoki Tani, Naoko Koide-Majima, Yukiyasu Kamitani, Haruhiko Kishima (2022). Voluntary control of semantic neural representations by imagery with conflicting visual stimulation. arXiv arXiv:2112.01223.

ePoster

M1-PMd connectivity modulation via fMRI-neurofeedback

FENS Forum 2024

ePoster

Methodological issues in electroencephalographic neurofeedback: Variations in standard bands power caused by non-specific factors

Jacob Maaz, Arnaud Rey, Laurent Waroquier, Véronique Paban

FENS Forum 2024

ePoster

Transcranial magnetic stimulation neurofeedback – A multimodal, multiphase approach to stroke rehabilitation using EEG BCI

Emmet McNickle, Colin Simon, Kathy Ruddy

FENS Forum 2024

ePoster

Incepting meaning to meaningless symbols without participants awareness by using real-time fMRI decoded neurofeedback

Pedro Margolles García

Neuromatch 5