Neurological Disease
neurological disease
Myelin Formation and Oligodendrocyte Biology in Epilepsy
Epilepsy is one of the most common neurological diseases according to the World Health Organization (WHO) affecting around 70 million people worldwide [WHO]. Patients who suffer from epilepsy also suffer from a variety of neuro-psychiatric co-morbidities, which they can experience as crippling as the seizure condition itself. Adequate organization of cerebral white matter is utterly important for cognitive development. The failure of integration of neurologic function with cognition is reflected in neuro-psychiatric disease, such as autism spectrum disorder (ASD). However, in epilepsy we know little about the importance of white matter abnormalities in epilepsy-associated co-morbidities. Epilepsy surgery is an important therapy strategy in patients where conventional anti-epileptic drug treatment fails . On histology of the resected brain samples, malformations of cortical development (MCD) are common among the epilepsy surgery population, especially focal cortical dysplasia (FCD) and tuberous sclerosis complex (TSC). Both pathologies are associated with constitutive activation of the mTOR pathway. Interestingly, some type of FCD is morphological similar to TSC cortical tubers including the abnormalities of the white matter. Hypomyelination with lack of myelin-producing cells, the oligodendrocytes, within the lesional area is a striking phenomenon. Impairment of the complex myelination process can have a major impact on brain function. In the worst case leading to distorted or interrupted neurotransmissions. It is still unclear whether the observed myelin pathology in epilepsy surgical specimens is primarily related to the underlying malformation process or is just a secondary phenomenon of recurrent epileptic seizures creating a toxic micro-environment which hampers myelin formation. Interestingly, mTORC1 has been implicated as key signal for myelination, thus, promoting the maturation of oligodendrocytes . These results, however, remain controversial. Regardless of the underlying pathophysiologic mechanism, alterations of myelin dynamics, depending on their severity, are known to be linked to various kinds of developmental disorders or neuropsychiatric manifestations.
Myelin Formation and Oligodendrocyte Biology in Epilepsy
Epilepsy is one of the most common neurological diseases according to the World Health Organization (WHO) affecting around 70 million people worldwide [WHO]. Patients who suffer from epilepsy also suffer from a variety of neuro-psychiatric co-morbidities, which they can experience as crippling as the seizure condition itself. Adequate organization of cerebral white matter is utterly important for cognitive development. The failure of integration of neurologic function with cognition is reflected in neuro-psychiatric disease, such as autism spectrum disorder (ASD). However, in epilepsy we know little about the importance of white matter abnormalities in epilepsy-associated co-morbidities. Epilepsy surgery is an important therapy strategy in patients where conventional anti-epileptic drug treatment fails . On histology of the resected brain samples, malformations of cortical development (MCD) are common among the epilepsy surgery population, especially focal cortical dysplasia (FCD) and tuberous sclerosis complex (TSC). Both pathologies are associated with constitutive activation of the mTOR pathway. Interestingly, some type of FCD is morphological similar to TSC cortical tubers including the abnormalities of the white matter. Hypomyelination with lack of myelin-producing cells, the oligodendrocytes, within the lesional area is a striking phenomenon. Impairment of the complex myelination process can have a major impact on brain function. In the worst case leading to distorted or interrupted neurotransmissions. It is still unclear whether the observed myelin pathology in epilepsy surgical specimens is primarily related to the underlying malformation process or is just a secondary phenomenon of recurrent epileptic seizures creating a toxic micro-environment which hampers myelin formation. Interestingly, mTORC1 has been implicated as key signal for myelination, thus, promoting the maturation of oligodendrocytes . These results, however, remain controversial. Regardless of the underlying pathophysiologic mechanism, alterations of myelin dynamics, depending on their severity, are known to be linked to various kinds of developmental disorders or neuropsychiatric manifestations.
Apathy and impulsivity in neurological disease – cause, effect and treatment
Exploring mechanisms of human brain expansion in cerebral organoids
The human brain sets us apart as a species, with its size being one of its most striking features. Brain size is largely determined during development as vast numbers of neurons and supportive glia are generated. In an effort to better understand the events that determine the human brain’s cellular makeup, and its size, we use a human model system in a dish, called cerebral organoids. These 3D tissues are generated from pluripotent stem cells through neural differentiation and a supportive 3D microenvironment to generate organoids with the same tissue architecture as the early human fetal brain. Such organoids are allowing us to tackle questions previously impossible with more traditional approaches. Indeed, our recent findings provide insight into regulation of brain size and neuron number across ape species, identifying key stages of early neural stem cell expansion that set up a larger starting cell number to enable the production of increased numbers of neurons. We are also investigating the role of extrinsic regulators in determining numbers and types of neurons produced in the human cerebral cortex. Overall, our findings are pointing to key, human-specific aspects of brain development and function, that have important implications for neurological disease.
Homeostatic Plasticity in Health and Disease
Dr. Davis will present a summary regarding the identification and characterization of mechanisms of homeostatic plasticity as they relate to the control of synaptic transmission. He will then provide evidence of translation to the mammalian neuromuscular junction and central synapses, and provide tangible links to the etiology of neurological disease.
Neuronal RNA signatures: Regulation and Function
Neurons are uniquely complex cells characterized by the expression of RNA sequences that are found in no other cell type: neuron-specific mRNA splice isoforms, circular RNAs, microRNAs, and ultra-long 3’UTRs. Although relatively little is known about how these neuronal RNA signatures control neuronal development and function, the importance of RNA-directed regulation in the brain is exemplified by its implication in neurological diseases. Our goal is to gain mechanistic and functional insight of the neuron-specific RNA landscape that drives neural function in health and disease.
Pelizaeus-Merzbacher disease and related disorders
Synaptic health in Parkinson's Disease
Parkinson's disease (PD) is the second most common neurodegenerative disorder, affecting 1% of over 65's; there is currently no effective treatment. Dopaminergic neuronal loss is hallmark in PD and yet despite decades of intensive research there is still no known therapeutic which will completely halt the disorder. As a result, identification of interventive therapies to reverse or prevent PD are essential. Using genetically faithful models (induced pluripotent stem cells and knock-in mice) of familial late onset PD (LRRK2 G2019S and GBA N370S) we have contributed to the literature that neuronal dysfunction precedes degeneration. Specifically, using whole cell patch clamp electrophysiology, biochemical, behavioural and molecular biological techniques, we have begun to investigate the fundamental processes that make neurons specialised i.e., synaptic function and neurotransmission. We illustrate those alterations to spontaneous neurotransmitter release, neuronal firing, and short-term plasticity as well as Ca2+ and energy dyshomeostasis, are some of the earliest observable pathological dysfunctions and are likely precursors to late-stage degeneration. These pathologies represent targets which can be manipulated to address causation, rather than the symptoms of the PD, and represent a marker that, if measurable in patients, could form the basis of early PD detection and intervention.
Using Human Stem Cells to Uncover Genetic Epilepsy Mechanisms
Reprogramming somatic cells to a pluripotent state via the induced pluripotent stem cell (iPSC) method offers an increasingly utilized approach for neurological disease modeling with patient-derived cells. Several groups, including ours, have applied the iPSC approach to model severe genetic developmental and epileptic encephalopathies (DEEs) with patient-derived cells. Although most studies to date involve 2-D cultures of patient-derived neurons, brain organoids are increasingly being employed to explore genetic DEE mechanisms. We are applying this approach to understand PMSE (Polyhydramnios, Megalencephaly and Symptomatic Epilepsy) syndrome, Rett Syndrome (in collaboration with Ben Novitch at UCLA) and Protocadherin-19 Clustering Epilepsy (PCE). I will describe our findings of robust structural phenotypes in PMSE and PCE patient-derived brain organoid models, as well as functional abnormalities identified in fusion organoid models of Rett syndrome. In addition to showing epilepsy-relevant phenotypes, both 2D and brain organoid cultures offer platforms to identify novel therapies. We will also discuss challenges and recent advances in the brain organoid field, including a new single rosette brain organoid model that we have developed. The field is advancing rapidly and our findings suggest that brain organoid approaches offers great promise for modeling genetic neurodevelopmental epilepsies and identifying precision therapies.
Speech as a biomarker in ataxia: What can it tell us and how should we use it?
Update Metachromatic Leukodystrophy
MRI pattern recognition in leukodystrophies
Benign hereditary choreas
Portable neuroscience: using devices and apps for diagnosis and treatment of neurological disease
Scientists work in laboratories; comfortable spaces which we equip and configure to be ideal for our needs. The scientific paradigm has been adopted by clinicians, who run diagnostic tests and treatments in fully equipped hospital facilities. Yet advances in technology mean that that increasingly many functions of a laboratory can be compressed into miniature devices, or even into a smartphone app. This has the potential to be transformative for healthcare in developing nations, allowing complex tests and interventions to be made available in every village. In this talk, I will give two examples of this approach from my recent work. In the field of stroke rehabilitation, I will present basic research which we have conducted in animals over the last decade. This reveals new ways to intervene and strengthen surviving pathways, which can be deployed in cheap electronic devices to enhance functional recovery. In degenerative disease, we have used Bayesian statistical methods to improve an algorithm to measure how rapidly a subject can stop an action. We then implemented this on a portable device and on a smartphone app. The measurement obtained can act as a useful screen for Parkinson’s Disease. I conclude with an outlook for the future of this approach, and an invitation to those who would be interesting in collaborating in rolling it out to in African settings.
Challenges in Frontotemporal Dementia: clinical, genetic and pathological heterogeneity
Untitled Seminar
Interactions between the microbiome and nervous system during early development
The gut microbiota is emerging as an important modulator of brain function and behavior, as several recent discoveries reveal substantial effects of the microbiome on neurophysiology, neuroimmunity and animal behavior. Despite these findings supporting a “microbiome-gut-brain axis”, the molecular and cellular mechanisms that underlie interactions between the gut microbiota and brain remain poorly understood. To uncover these, the Hsiao laboratory is mining the human microbiota for microbial modulators of host neuroactive molecules, investigating the impact of microbiota-immune system interactions on neurodevelopment and examining the microbiome as an interface between gene-environment interactions in neurological diseases. In particular, our research on effects of the maternal microbiome on offspring development in utero are revealing novel interactions between microbiome-dependent metabolites and fetal thalamocortical axonogenesis. Overall, we aim to dissect biological pathways for communication between the gut microbiota and nervous system, toward understanding fundamental interactions between physiological systems that impact brain and behavior.
Multiplexing and Demultiplexing with cerebral organoids for neurological diseases
Neuroprosthetic interventions for orthostatic hypotension in neurological diseases
FENS Forum 2024