← Back

Neuromodulators

Topic spotlight
TopicWorld Wide

neuromodulators

Discover seminars, jobs, and research tagged with neuromodulators across World Wide.
19 curated items10 Seminars6 Positions3 ePosters
Updated about 20 hours ago
19 items · neuromodulators
19 results
Position

Nikolas Karalis

Paris Brain Institute
Paris, France
Dec 5, 2025

We are seeking a passionate and dedicated research technician to join our team Neuronal Circuits & Brain Dynamics at the Paris Brain Institute (ICM). Our work focuses on unraveling the fascinating mysteries of how the brain generates internal states and how neuromodulators, such as dopamine and serotonin, influence neuronal activity during behavior. To achieve our goals, we employ state-of-the-art techniques, including behavioral, optogenetic, imaging, electrophysiological, and genetic approaches in mice. Main Responsibilities • As a research technician, you are at the epicenter of our research activities and you will serve as a point of reference of the lab know-how across generations of lab members. • As a hands-on research technician, your primary responsibilities will include organizing the laboratory, maintaining basic lab infrastructure, performing routine tasks, regularly updating lab databases, ensuring the lab runs efficiently, and contributing to the team's research efforts. • Collaborating closely with the team, you will contribute to ongoing research projects and you will conduct behavioral and optogenetic experiments, carry out stereotaxic surgeries, and handle histological processing, including tissue slicing, immunostaining, and fluorescent microscopy. • You will be responsible for learning, developing, and passing on Standard Operating Procedures (SOPs) for the techniques utilized in our lab. • Additionally, in coordination with the head of the animal facility, you will supervise and ensure adherence to animal welfare guidelines, as well as maintain project permits and annual reports. • This role provides the opportunity to lead and participate in research projects to the extent of your desire. We offer competitive compensation and benefits within an interactive, interdisciplinary working environment, where cutting-edge science thrives and a dynamic, international research community awaits. As part of your role, you will receive extensive training in traditional and cutting-edge neuroscience techniques related to mice. If you are eager to join our vibrant research community and contribute to groundbreaking discoveries, we warmly welcome your application. The position is available immediately, with the potential for a permanent contract based on performance. If you would like to know more, visit our website: neuronaldynamics.eu and read about our team's mission and values. Why join our team • We are a young and vibrant group of scientists, fueled by curiosity and passion for understanding the brain. • We work as a team and use or invent cutting-edge neurotechnologies to answer fundamental questions in neuroscience. • Our team is committed to the training, mentorship, and career development of the next generation of neuroscientists. To achieve that, we foster an inclusive and supportive environment, where we can learn and advance science while having fun in the process. • Our work is multi-disciplinary, and so is our team. Irrespective of your background and project, our research environment will expose you to a diverse range of experimental and computational aspects of systems and circuits neuroscience. We thus encourage everyone to apply, especially those from underrepresented minorities. • Our team is affiliated with Inserm and is located in the Paris Brain Institute (ICM), where we have access to state-of-the-art facilities and resources. • Our vibrant community at the ICM and throughout Paris promotes broad collaboration and learning opportunities. <b>How to apply</b> If you are eager to join our vibrant research community and contribute to groundbreaking discoveries, we warmly welcome your application. The position is available immediately, with the potential for a permanent contract based on performance. Please send a statement of your past work and interests, your CV, and contact information for 1-3 references to the address: contact@neuronaldynamics.eu

Position

Nikolas Karalis

Paris Brain Institute
Paris, France
Dec 5, 2025

We invite applications for postdoctoral researchers to join our team Neuronal Circuits & Brain Dynamics at the Paris Brain Institute (ICM) to study the principles of neuronal circuit organization and brain dynamics. If you are an ambitious and driven researcher, interested in experimental or computational systems and circuits neuroscience, and seeking an environment that fosters intellectual and professional growth, we invite you to consider joining our team. Together, we'll make a lasting impact on science and pave the way for your successful research career. Our team values diversity and welcomes researchers from all backgrounds and profiles. If your project ideas align with our research focus, we encourage you to get in touch with us. Research Topics We are interested in how neuronal circuits are organized and how the collective action of neurons gives rise to the emergent complex brain dynamics and behavior. We focus on how neurochemicals and bodily signals influence the brain. * We study how the simultaneous release of neuromodulators influences the activity of neurons and the coordination of brain regions * We also study how bodily signals, such as breathing, serve as fundamental elements of the oscillatory circuit architecture * We employ our approach to study the brain dynamics during behavior and sleep and their involvement in the transformation of fleeting experiences into long-term memories To answer these fundamental questions about the nature and function of the brain, we combine a range of cutting-edge neurotechnologies that enable us to observe and control the activity of the brain. We aim to identify and explore the fundamental principles of neural circuit organization and apply our understanding for the improvement of the human condition. Pure experimental, as well as computational/theoretical, or hybrid projects are available, depending on your interest and skills. Opportunities As a postdoctoral researcher in our group: • You will be an integral part of shaping our research direction and team culture. You will engage in exciting and meaningful research and will have access to all the tools necessary to push the boundaries of scientific exploration, with our cutting-edge techniques and state-of-the-art facilities. • You will have the opportunity to mentor graduate and master's students. This role enhances your leadership and communication skills while you contribute to the growth of the next generation of scientists. By guiding and collaborating with these aspiring researchers, you contribute to the collective knowledge and expertise of the team. Mentoring fosters a supportive and enriching atmosphere that reduces the mental strain of working alone on a project, as you can share ideas, problem-solve together, and gain fresh perspectives. • You will have ample opportunities to develop vital skills for your future academic career, such as mentoring, grant writing, presenting your work, publishing papers, and leading projects to completion. In parallel, you will gain invaluable first-hand experience in setting up and managing a young research team. • We encourage participation in conferences and workshops, where you can present your research findings to the wider scientific community. Why join our team • We are a young and vibrant group of scientists, fueled by curiosity and passion for understanding the brain. We work as a team and use or invent cutting-edge neurotechnologies to answer fundamental questions in neuroscience. • Our team is committed to the training, mentorship, and career development of the next generation of neuroscientists. To achieve that, we foster an inclusive and supportive environment, where we can learn and advance science while having fun in the process. • Our work is multi-disciplinary, and so is our team. Irrespective of your background and project, our research environment will expose you to a diverse range of experimental and computational aspects of systems and circuits neuroscience. We thus encourage everyone to apply, especially those from underrepresented minorities. • Working in our team will provide you with invaluable experience across all stages of research and you will have the opportunity to engage in experiment design and execution, method development, software design, and data analysis, as well as publishing and communicating research results. • Our team is affiliated with Inserm and is located in the Paris Brain Institute (ICM), where we have access to state-of-the-art facilities and resources. • Our vibrant community at the ICM and throughout Paris promotes broad collaboration and learning opportunities.

Position

Nikolas Karalis

Paris Brain Institute
Paris, France
Dec 5, 2025

If you are a data scientist, programmer, or engineer, with a keen interest in helping to understand the brain, consider joining our team Neuronal Circuits & Brain Dynamics at the Paris Brain Institute (ICM). We study the principles of neuronal circuit organization and brain dynamics. Our work focuses on unraveling the fascinating mysteries of how the brain generates internal states and how neuromodulators, such as dopamine and serotonin, influence neuronal activity and communication between brain regions during behavior. To achieve our goals, we perform large-scale recordings from thousands of neurons simultaneously using multimodal recordings, including electrophysiological or optical imaging approaches. We employ state-of-the-art techniques, including behavioral, optogenetic, imaging, electrophysiological, and genetic approaches in mice to record and manipulate the brain activity during behavior. Using this unprecedented data, we will be able to understand information flow in the brain in ways that would be unimaginable only a few years ago. However, the scale and complexity of this data provide major challenges and unique opportunities. We are looking for computationally-orientated researchers to join our team as temporary or permanent staff members, to help us develop methods to interact and analyze our multi-dimensional neurophysiological and behavioral data, and to develop innovative analysis approaches and efficient processing pipelines, to accelerate the progress of our research on our path to understanding the brain. As a data analyst in our group, you will interact closely with experimentalists and contribute crucially to the research. Our team values diversity and welcomes researchers from all backgrounds and profiles. If your profile aligns with our research needs, we encourage you to get in touch with us. Main responsibilities • Organize data management pipeline • Analyze neurophysiological and behavioral data • Develop analysis methods and software tools to facilitate the analysis of multi-modal and multi-dimensional neurophysiological data • Implement cutting-edge data science approaches (statistical, computational, and ML) for complex neuroscience problems • Create robust and efficient data pipelines to extract, transform, and visualize data • Develop, test, and implement scientific software (e.g., for reproducible analysis pipelines and data storage) • Interact with experimentalists to design experiments and implement analyses • Analyze current technologies, algorithms, models, and methods • As part of your role, you will have the opportunity to collaborate with other teams, attend trainings, mentor students, have independent projects, and present at major relevant conferences (Cosyne, NeurIPS). We offer competitive compensation and benefits within an interactive, interdisciplinary working environment, where cutting-edge science thrives and a dynamic, international research community awaits.

Position

Yao Chen, PhD

Department of Neuroscience, Washington University School of Medicine
St. Louis, USA
Dec 5, 2025

Yao Chen’s laboratory at Washington University in St. Louis is seeking a passionate Postdoctoral or staff/senior scientist/engineer who is interested in building innovative optical setups and making them useful for biological discovery. The candidate should have at least 2-3 years of experience developing optical instrumentation or microscopy methods, background in fluorescence imaging, and experience developing custom imaging software. The successful applicant will design, build, and characterize innovative optical instruments for fluorescence microscopy applications. The candidate will also have opportunities to perform optical imaging experiments and quantitative data analyses for neuroscience discovery, as well as contribute to writing research papers and grant applications. The projects in the lab aim to understand how the spatial and temporal features of signals inside the cell respond to neuromodulators (chemicals in the brain), behavior state transitions, and learning. The imaging experiments are often combined with optogenetics and electrophysiology. The candidate has access to cutting-edge instrumentation within the lab, numerous core facilities within Washington University, and will be part of a vibrant and collegial neuroscience and engineering community. We are committed to mentoring and offer a creative, thoughtful, and collaborative scientific environment. We welcome individuals who value rigor, innovation, and collegiality, and will value your creativity in shaping the projects. The lab consists of a mix of kind, fearless, and dedicated students, postdocs, and staff with diverse research and cultural backgrounds. In addition to performing their own innovative work, the candidate will have opportunities to collaborate with, learn from, and mentor other lab members. Our lab is a member of the Department of Neuroscience at Washington University School of Medicine in St. Louis, a large and collegial scientific community. WashU Neuroscience is consistently ranked as one of the top 10 places worldwide for neuroscience research. Additional information on being a postdoc at Washington University in St. Louis can be found at https://neuroscience.wustl.edu/education/postdoctoral-research/ and https://postdoc.wustl.edu/prospective-postdocs/ St. Louis is a city rich in culture, green spaces, free museums, world-class restaurants, and thriving music and arts scenes. On top of it all, St. Louis is affordable and commuting to Washington University’s campuses is stress-free, whether you go by foot, bike, public transit, or car. The area combines the attractions of a major city with affordable lifestyle opportunities. Washington University is dedicated to building a diverse community of individuals who are committed to contributing to an inclusive environment – fostering respect for all and welcoming individuals from diverse backgrounds, experiences and perspectives. Individuals with a commitment to these values are encouraged to apply. Minimum education & experience The appointee will have earned a Master’s degree (for staff scientist) or Ph.D. (for postdoctoral associate or senior scientist) by the time of starting the appointment. Applicants should submit their CV, a cover letter explaining their background and interest in the position, and whether they are applying to the scientist or postdoctoral position, as well as 3 references to Dr. Yao Chen (yaochen@wustl.edu).

PositionNeuroscience

Prof Yao Chen

Washington University School of Medicine in St. Louis
Saint Louis Missouri USA
Dec 5, 2025

Do you want to illuminate the “dark matter of the brain” by watching neuromodulators and their intracellular effectors in action? Do you wonder why we spend a third of our life sleeping? Do you seek to become a bridge builder between cellular and systems neuroscience? Two postdoctoral positions are available to investigate the role of neuromodulator actions and sleep functions in Dr. Yao Chen’s laboratory in the Department of Neuroscience at Washington University in St. Louis. The first project will investigate how neuromodulators are interpreted via the spatial and temporal features of intracellular signals to play critical roles in cellular physiology and behavior. The second project investigates the mechanisms by which sleep supports cellular and organismal functions. We accomplish both goals by measuring and perturbing the dynamics of biological signals inside and outside the cell. We develop and employ a variety of techniques ex vivo and in vivo, including two-photon fluorescence lifetime imaging microscopy, electrophysiology, biosensor design, opto/chemogenetics, molecular biology, pharmacology, and behavior analyses. For additional information see: https://sites.wustl.edu/yaochenlab/. The PI is committed to mentoring and to nurturing a creative, thoughtful, and collaborative lab culture. Washington University neuroscience community is scientifically excellent and exceptionally collegial. The School of Medicine is consistently ranked among the top 5 medical schools in the United States, with extensive infrastructural and core facility support, and a dynamic research environment in many areas of basic and clinical science. Postdocs are also supported through a dedicated Office of Postdoctoral Affairs and an active Postdoc Society with many professional development opportunities. The St. Louis area combines the attractions of a major city with affordable lifestyle opportunities. The position comes with a competitive salary and a generous benefit package. We are looking for highly motivated individuals who are independent and committed to scientific discovery. The candidates should have expertise in optical imaging and are skilled in quantitative data analyses. Experience in neuromodulator signaling, circadian rhythm or sleep biology, and expertise in electrophysiology, animal behavior, or systems neuroscience are valued. Our work is interdisciplinary and will benefit from diverse perspectives, including molecular and cell biology, systems biology, biophysics, pharmacology, and engineering – even if your past work is not directly related to neuromodulators or sleep, you might be a great fit for the position. Interested candidates should send the following to yaochen@wustl.edu. 1) a cover letter explaining motivation, research experience, and interests; 2) CV; 3) the names of three references.

SeminarNeuroscience

Dynamic endocrine modulation of the nervous system

Emily Jabocs
US Santa Barbara Neuroscience
Apr 17, 2023

Sex hormones are powerful neuromodulators of learning and memory. In rodents and nonhuman primates estrogen and progesterone influence the central nervous system across a range of spatiotemporal scales. Yet, their influence on the structural and functional architecture of the human brain is largely unknown. Here, I highlight findings from a series of dense-sampling neuroimaging studies from my laboratory designed to probe the dynamic interplay between the nervous and endocrine systems. Individuals underwent brain imaging and venipuncture every 12-24 hours for 30 consecutive days. These procedures were carried out under freely cycling conditions and again under a pharmacological regimen that chronically suppresses sex hormone production. First, resting state fMRI evidence suggests that transient increases in estrogen drive robust increases in functional connectivity across the brain. Time-lagged methods from dynamical systems analysis further reveals that these transient changes in estrogen enhance within-network integration (i.e. global efficiency) in several large-scale brain networks, particularly Default Mode and Dorsal Attention Networks. Next, using high-resolution hippocampal subfield imaging, we found that intrinsic hormone fluctuations and exogenous hormone manipulations can rapidly and dynamically shape medial temporal lobe morphology. Together, these findings suggest that neuroendocrine factors influence the brain over short and protracted timescales.

SeminarNeuroscienceRecording

Norepinephrine links astrocytic activity to regulation of cortical state

Michael Reitman
Poskanzer Lab, UCSF
Jan 25, 2022

Cortical state, defined by the synchrony of population-level neuronal activity, is a key determinant of sensory perception. While many arousal-associated neuromodulators—including norepinephrine (NE)—reduce cortical synchrony, how the cortex resynchronizes following NE signaling remains unknown. Using in vivo two-photon imaging and electrophysiology in mouse visual cortex, we describe a critical role for cortical astrocytes in circuit resynchronization. We characterize astrocytes’ sensitive calcium responses to changes in behavioral arousal and NE, identify that astrocyte signaling precedes increases in cortical synchrony, and demonstrate that astrocyte-specific deletion of Adra1A alters arousal-related cortical synchrony. Our findings demonstrate that astrocytic NE signaling acts as a distinct neuromodulatory pathway, regulating cortical state and linking arousal-associated desynchrony to cortical circuit resynchronization.

SeminarNeuroscienceRecording

A Flash of Darkness within Dusk: Crossover inhibition in the mouse retina

Henrique Von Gersdorff
OHSU
Jan 17, 2022

To survive in the wild small rodents evolved specialized retinas. To escape predators, looming shadows need to be detected with speed and precision. To evade starvation, small seeds, grass, nuts and insects need to also be detected quickly. Some of these succulent seeds and insects may be camouflaged offering only low contrast targets.Moreover, these challenging tasks need to be accomplished continuously at dusk, night, dawn and daytime. Crossover inhibition is thought to be involved in enhancing contrast detectionin the microcircuits of the inner plexiform layer of the mammalian retina. The AII amacrine cells are narrow field cells that play a key role in crossover inhibition. Our lab studies the synaptic physiology that regulates glycine release from AII amacrine cellsin mouse retina. These interneurons receive excitation from rod and conebipolar cells and transmit excitation to ON-type bipolar cell terminals via gap junctions. They also transmit inhibition via multiple glycinergic synapses onto OFF bipolar cell terminals.AII amacrine cells are thus a central hub of synaptic information processing that cross links the ON and the OFF pathways. What are the functions of crossover inhibition? How does it enhance contrast detection at different ambient light levels? How is the dynamicrange, frequency response and synaptic gain of glycine release modulated by luminance levels and circadian rhythms? How is synaptic gain changed by different extracellular neuromodulators, like dopamine, and by intracellular messengers like cAMP, phosphateand Ca2+ ions from Ca2+ channels and Ca2+ stores? My talk will try to answer some of these questions and will pose additional ones. It will end with further hypothesis and speculations on the multiple roles of crossover inhibition.

SeminarNeuroscienceRecording

An in-silico framework to study the cholinergic modulation of the neocortex

Cristina Colangelo
EPFL, Blue Brain Project
Jun 29, 2021

Neuromodulators control information processing in cortical microcircuits by regulating the cellular and synaptic physiology of neurons. Computational models and detailed simulations of neocortical microcircuitry offer a unifying framework to analyze the role of neuromodulators on network activity. In the present study, to get a deeper insight in the organization of the cortical neuropil for modeling purposes, we quantify the fiber length per cortical volume and the density of varicosities for catecholaminergic, serotonergic and cholinergic systems using immunocytochemical staining and stereological techniques. The data obtained are integrated into a biologically detailed digital reconstruction of the rodent neocortex (Markram et al, 2015) in order to model the influence of modulatory systems on the activity of the somatosensory cortex neocortical column. Simulations of ascending modulation of network activity in our model predict the effects of increasing levels of neuromodulators on diverse neuron types and synapses and reveal a spectrum of activity states. Low levels of neuromodulation drive microcircuit activity into slow oscillations and network synchrony, whereas high neuromodulator concentrations govern fast oscillations and network asynchrony. The models and simulations thus provide a unifying in silico framework to study the role of neuromodulators in reconfiguring network activity.

SeminarNeuroscience

State-dependent cortical circuits

Jess Cardin
Yale School of Medicine
May 13, 2021

Spontaneous and sensory-evoked cortical activity is highly state-dependent, promoting the functional flexibility of cortical circuits underlying perception and cognition. Using neural recordings in combination with behavioral state monitoring, we find that arousal and motor activity have complementary roles in regulating local cortical operations, providing dynamic control of sensory encoding. These changes in encoding are linked to altered performance on perceptual tasks. Neuromodulators, such as acetylcholine, may regulate this state-dependent flexibility of cortical network function. We therefore recently developed an approach for dual mesoscopic imaging of acetylcholine release and neural activity across the entire cortical mantle in behaving mice. We find spatiotemporally heterogeneous patterns of cholinergic signaling across the cortex. Transitions between distinct behavioral states reorganize the structure of large-scale cortico-cortical networks and differentially regulate the relationship between cholinergic signals and neural activity. Together, our findings suggest dynamic state-dependent regulation of cortical network operations at the levels of both local and large-scale circuits. Zoom Meeting ID: 964 8138 3003 Contact host if you cannot connect.

SeminarNeuroscienceRecording

New genetically encoded sensors to track addiction-relevant neuromodulators in vivo

Tommaso Patriarchi
University of Zurich
Apr 14, 2021
SeminarNeuroscience

State-dependent cortical circuits

Jessica Cardin
Yale School of Medicine
Jan 17, 2021

Spontaneous and sensory-evoked cortical activity is highly state-dependent, promoting the functional flexibility of cortical circuits underlying perception and cognition. Using neural recordings in combination with behavioral state monitoring, we find that arousal and motor activity have complementary roles in regulating local cortical operations, providing dynamic control of sensory encoding. These changes in encoding are linked to altered performance on perceptual tasks. Neuromodulators, such as acetylcholine, may regulate this state-dependent flexibility of cortical network function. We therefore recently developed an approach for dual mesoscopic imaging of acetylcholine release and neural activity across the entire cortical mantle in behaving mice. We find spatiotemporally heterogeneous patterns of cholinergic signaling across the cortex. Transitions between distinct behavioral states reorganize the structure of large-scale cortico-cortical networks and differentially regulate the relationship between cholinergic signals and neural activity. Together, our findings suggest dynamic state-dependent regulation of cortical network operations at the levels of both local and large-scale circuits.

SeminarNeuroscienceRecording

State-dependent regulation of cortical circuits

Jessica Cardin
Yale School of Medicine
Nov 10, 2020

Spontaneous and sensory-evoked cortical activity is highly state-dependent, promoting the functional flexibility of cortical circuits underlying perception and cognition. Using neural recordings in combination with behavioral state monitoring, we find that arousal and motor activity have complementary roles in regulating local cortical operations, providing dynamic control of sensory encoding. These changes in encoding are linked to altered performance on perceptual tasks. Neuromodulators, such as acetylcholine, may regulate this state-dependent flexibility of cortical network function. We therefore recently developed an approach for dual mesoscopic imaging of acetylcholine release and neural activity across the entire cortical mantle in behaving mice. We find spatiotemporally heterogeneous patterns of cholinergic signaling across the cortex. Transitions between distinct behavioral states reorganize the structure of large-scale cortico-cortical networks and differentially regulate the relationship between cholinergic signals and neural activity. Together, our findings suggest dynamic state-dependent regulation of cortical network operations at the levels of both local and large-scale circuits.

SeminarNeuroscienceRecording

Circuit mechanisms underlying the dynamic control of cortical processing by subcortical neuromodulators

Anita Disney
Duke University School of Medicine
Oct 22, 2020

Behavioral states such as arousal and attention can have profound effects on sensory processing, determining how – sometimes whether – a stimulus is processed. This state-dependence is believed to arise, at least in part, as a result of inputs to cortex from subcortical structures that release neuromodulators such as acetylcholine, noradrenaline, and serotonin, often non-synaptically. The mechanisms that underlie the interaction between these “wireless” non-synaptic signals and the “wired” cortical circuit are not well understood. Furthermore, neuromodulatory signaling is traditionally considered broad in its impact across cortex (within a species) and consistent in its form and function across species (at least in mammals). The work I will present approaches the challenge of understanding neuromodulatory action in the cortex from a number of angles: anatomy, physiology, pharmacology, and chemistry. The overarching goal of our effort is to elucidate the mechanisms behind local neuromodulation in the cortex of non-human primates, and to reveal differences in structure and function across cortical model systems.

ePoster

Influence of neuromodulators on brain state transitions in larval zebrafish

Antoine Légaré, Sandrine Poulin, Vincent Boily, Mado Lemieux, Patrick Desrosiers, Paul De Koninck

COSYNE 2023

ePoster

Investigating the role of neuromodulators in mice during associative learning with a 50% reward schedule

Réka Kispál, Írisz Szabó, Bálint Király, Anna Velencei, Balázs Hangya

FENS Forum 2024

ePoster

Neuromodulators trigger the formation of inhibitory boutons in hippocampus via activation of cAMP/PKA signaling

Ségolène Bompierre, Seeger Deerenberg, Iris Westerdiep, Gisela Espriu Aguado, Bart Jongbloets, Corette Wierenga

FENS Forum 2024