← Back

Neuromorphic Hardware

Topic spotlight
TopicWorld Wide

neuromorphic hardware

Discover seminars, jobs, and research tagged with neuromorphic hardware across World Wide.
13 curated items9 Seminars3 Positions1 ePoster
Updated 1 day ago
13 items · neuromorphic hardware
13 results
Position

Dr. Robert Legenstein

Graz University of Technology
Graz University of Technology, Austria
Dec 5, 2025

The successful candidate will work on learning algorithms for spiking neural networks in the international consortium of the international project 'Scalable Learning Neuromorphics'. We will develop in this project learning algorithms for spiking neural networks for memristive hardware implementations. This project aims to develop scalable Spiking Neural Networks (SNNs) by leveraging the integration of 3D memristors, thereby overcoming limitations of conventional Artificial Neural Networks (ANNs). Positioned at the intersection of artificial intelligence and brain-inspired computing, the initiative focuses on innovative SNN training methods, optimizing recurrent connections, and designing dedicated hardware accelerators. These advancements will uniquely contribute to scalability and energy efficiency. The endeavor addresses key challenges in event-based processing and temporal coding, aiming for substantial performance gains in both software and hardware implementations of artificial intelligence systems. Expected research outputs include novel algorithms, optimization methods, and memristor-based hardware architectures, with broad applications and potential for technology transfer.

Position

Teresa Serrano Gotarredona

Institute of Microelectronics of Seville (IMSE), University of Seville, Spanish Research Council (CSIC)
Institute of Microelectronics of Seville (IMSE), Parque Científico y Tecnológico Cartuja, 41092 Sevilla, SPAIN
Dec 5, 2025

We are seeking a highly skilled researcher with a PhD in electrical or electronics engineer/computer science engineer/physicist with experience in areas such as analog or digital circuit design, embedded systems, systems on chip, FPGA programming or artificial intelligence. The candidate will join the staff of the Institute of Microelectronics of Seville (IMSE), an academic research center belonging to the University of Seville and the Spanish Research Council (CSIC). IMSE is equipped with state-of-the-art infrastructures hosting 1.000m^2 of laboratories for the design and test of electronic circuits and opto-electronic sensors. A new clean room facility for advanced integrated circuits packaging and additive manufacturing is currently being set up. It is located in a technological park at 15 minutes walking from Sevilla city center. The candidate is sought to join the Neuromorphic Systems Group, which has over 30 years of experience in the field of neuromorphic hardware systems and applications, including the development of spatial contrast retinas, dynamic vision sensors, convolutional neural processors, spiking convolutional neural networks, spiking learning circuits and algorithms, and spiking neural processors combining conventional CMOS circuits with nanodevices.

SeminarNeuroscienceRecording

Beyond Biologically Plausible Spiking Networks for Neuromorphic Computing

A. Subramoney
University of Bochum
Nov 8, 2022

Biologically plausible spiking neural networks (SNNs) are an emerging architecture for deep learning tasks due to their energy efficiency when implemented on neuromorphic hardware. However, many of the biological features are at best irrelevant and at worst counterproductive when evaluated in the context of task performance and suitability for neuromorphic hardware. In this talk, I will present an alternative paradigm to design deep learning architectures with good task performance in real-world benchmarks while maintaining all the advantages of SNNs. We do this by focusing on two main features – event-based computation and activity sparsity. Starting from the performant gated recurrent unit (GRU) deep learning architecture, we modify it to make it event-based and activity-sparse. The resulting event-based GRU (EGRU) is extremely efficient for both training and inference. At the same time, it achieves performance close to conventional deep learning architectures in challenging tasks such as language modelling, gesture recognition and sequential MNIST.

SeminarNeuroscienceRecording

Memory-enriched computation and learning in spiking neural networks through Hebbian plasticity

Thomas Limbacher
TU Graz
Nov 8, 2022

Memory is a key component of biological neural systems that enables the retention of information over a huge range of temporal scales, ranging from hundreds of milliseconds up to years. While Hebbian plasticity is believed to play a pivotal role in biological memory, it has so far been analyzed mostly in the context of pattern completion and unsupervised learning. Here, we propose that Hebbian plasticity is fundamental for computations in biological neural systems. We introduce a novel spiking neural network (SNN) architecture that is enriched by Hebbian synaptic plasticity. We experimentally show that our memory-equipped SNN model outperforms state-of-the-art deep learning mechanisms in a sequential pattern-memorization task, as well as demonstrate superior out-of-distribution generalization capabilities compared to these models. We further show that our model can be successfully applied to one-shot learning and classification of handwritten characters, improving over the state-of-the-art SNN model. We also demonstrate the capability of our model to learn associations for audio to image synthesis from spoken and handwritten digits. Our SNN model further presents a novel solution to a variety of cognitive question answering tasks from a standard benchmark, achieving comparable performance to both memory-augmented ANN and SNN-based state-of-the-art solutions to this problem. Finally we demonstrate that our model is able to learn from rewards on an episodic reinforcement learning task and attain near-optimal strategy on a memory-based card game. Hence, our results show that Hebbian enrichment renders spiking neural networks surprisingly versatile in terms of their computational as well as learning capabilities. Since local Hebbian plasticity can easily be implemented in neuromorphic hardware, this also suggests that powerful cognitive neuromorphic systems can be build based on this principle.

SeminarNeuroscienceRecording

General purpose event-based architectures for deep learning

Anand Subramoney
Institute for Neural Computation
Oct 4, 2022

Biologically plausible spiking neural networks (SNNs) are an emerging architecture for deep learning tasks due to their energy efficiency when implemented on neuromorphic hardware. However, many of the biological features are at best irrelevant and at worst counterproductive when evaluated in the context of task performance and suitability for neuromorphic hardware. In this talk, I will present an alternative paradigm to design deep learning architectures with good task performance in real-world benchmarks while maintaining all the advantages of SNNs. We do this by focusing on two main features -- event-based computation and activity sparsity. Starting from the performant gated recurrent unit (GRU) deep learning architecture, we modify it to make it event-based and activity-sparse. The resulting event-based GRU (EGRU) is extremely efficient for both training and inference. At the same time, it achieves performance close to conventional deep learning architectures in challenging tasks such as language modelling, gesture recognition and sequential MNIST

SeminarNeuroscienceRecording

Online Training of Spiking Recurrent Neural Networks​ With Memristive Synapses

Yigit Demirag
Institute of Neuroinformatics
Jul 5, 2022

Spiking recurrent neural networks (RNNs) are a promising tool for solving a wide variety of complex cognitive and motor tasks, due to their rich temporal dynamics and sparse processing. However training spiking RNNs on dedicated neuromorphic hardware is still an open challenge. This is due mainly to the lack of local, hardware-friendly learning mechanisms that can solve the temporal credit assignment problem and ensure stable network dynamics, even when the weight resolution is limited. These challenges are further accentuated, if one resorts to using memristive devices for in-memory computing to resolve the von-Neumann bottleneck problem, at the expense of a substantial increase in variability in both the computation and the working memory of the spiking RNNs. In this talk, I will present our recent work where we introduced a PyTorch simulation framework of memristive crossbar arrays that enables accurate investigation of such challenges. I will show that recently proposed e-prop learning rule can be used to train spiking RNNs whose weights are emulated in the presented simulation framework. Although e-prop locally approximates the ideal synaptic updates, it is difficult to implement the updates on the memristive substrate due to substantial device non-idealities. I will mention several widely adapted weight update schemes that primarily aim to cope with these device non-idealities and demonstrate that accumulating gradients can enable online and efficient training of spiking RNN on memristive substrates.

SeminarOpen SourceRecording

GeNN

James Knight
University of Sussex
Mar 22, 2022

Large-scale numerical simulations of brain circuit models are important for identifying hypotheses on brain functions and testing their consistency and plausibility. Similarly, spiking neural networks are also gaining traction in machine learning with the promise that neuromorphic hardware will eventually make them much more energy efficient than classical ANNs. In this session, we will present the GeNN (GPU-enhanced Neuronal Networks) framework, which aims to facilitate the use of graphics accelerators for computational models of large-scale spiking neuronal networks to address the challenge of efficient simulations. GeNN is an open source library that generates code to accelerate the execution of network simulations on NVIDIA GPUs through a flexible and extensible interface, which does not require in-depth technical knowledge from the users. GeNN was originally developed as a pure C++ and CUDA library but, subsequently, we have added a Python interface and OpenCL backend. We will briefly cover the history and basic philosophy of GeNN and show some simple examples of how it is used and how it interacts with other Open Source frameworks such as Brian2GeNN and PyNN.

SeminarNeuroscienceRecording

Optimal initialization strategies for Deep Spiking Neural Networks

Julia Gygax
Friedrich Miescher Institute for Biomedical Research (FMI)
Nov 2, 2021

Recent advances in neuromorphic hardware and Surrogate Gradient (SG) learning highlight the potential of Spiking Neural Networks (SNNs) for energy-efficient signal processing and learning. Like in Artificial Neural Networks (ANNs), training performance in SNNs strongly depends on the initialization of synaptic and neuronal parameters. While there are established methods of initializing deep ANNs for high performance, effective strategies for optimal SNN initialization are lacking. Here, we address this gap and propose flexible data-dependent initialization strategies for SNNs.

SeminarNeuroscienceRecording

Machine Learning with SNNs for low-power inference on neuromorphic hardware

Dylan Muir
SynSense
Nov 2, 2021
SeminarNeuroscienceRecording

Synthesizing Machine Intelligence in Neuromorphic Computers with Differentiable Programming

Emre Neftci
University of California Irvine
Aug 30, 2020

The potential of machine learning and deep learning to advance artificial intelligence is driving a quest to build dedicated computers, such as neuromorphic hardware that emulate the biological processes of the brain. While the hardware technologies already exist, their application to real-world tasks is hindered by the lack of suitable programming methods. Advances at the interface of neural computation and machine learning showed that key aspects of deep learning models and tools can be transferred to biologically plausible neural circuits. Building on these advances, I will show that differentiable programming can address many challenges of programming spiking neural networks for solving real-world tasks, and help devise novel continual and local learning algorithms. In turn, these new algorithms pave the road towards systematically synthesizing machine intelligence in neuromorphic hardware without detailed knowledge of the hardware circuits.

ePoster

Biologically Realistic Computational Primitives of Neocortex Implemented on Neuromorphic Hardware Improve Vision Transformer Performance

Asim Iqbal, Hassan Mahmood, Greg Stuart, Gord Fishell, Suraj Honnuraiah

COSYNE 2025