← Back

Neuronal Development

Topic spotlight
TopicWorld Wide

neuronal development

Discover seminars, jobs, and research tagged with neuronal development across World Wide.
11 curated items6 Seminars4 ePosters1 Position
Updated 2 days ago
11 items · neuronal development
11 results
Position

Sofia Lizarraga

University of South Carolina
Columbia, SC
Dec 5, 2025

The lizarraga laboratory is looking for a research assistant to work on an NIH funded project focusing on epigenetic mechanisms in neuronal development. We are looking for a responsible, organized, logical thinker, and dedicated person that is able to follow directions. The ideal candidate will have strong analytical, management, and communication skills and should be able to work in a collaborative manner. The research assistant will conduct experiments with various human-induced pluripotent stem cell lines using cellular and molecular approaches to understand the role of histone modifying enzymes in human neuronal development. Use this link to apply https://uscjobs.sc.edu/postings/117372

SeminarNeuroscience

NOTE: DUE TO A CYBER ATTACK OUR UNIVERSITY WEB SYSTEM IS SHUT DOWN - TALK WILL BE RESCHEDULED

Susanne Schoch McGovern
Universität Bonn
Jun 6, 2023

The size and structure of the dendritic arbor play important roles in determining how synaptic inputs of neurons are converted to action potential output and how neurons are integrated in the surrounding neuronal network. Accordingly, neurons with aberrant morphology have been associated with neurological disorders. Dysmorphic, enlarged neurons are, for example, a hallmark of focal epileptogenic lesions like focal cortical dysplasia (FCDIIb) and gangliogliomas (GG). However, the regulatory mechanisms governing the development of dendrites are insufficiently understood. The evolutionary conserved Ste20/Hippo kinase pathway has been proposed to play an important role in regulating the formation and maintenance of dendritic architecture. A key element of this pathway, Ste20-like kinase (SLK), regulates cytoskeletal dynamics in non-neuronal cells and is strongly expressed throughout neuronal development. Nevertheless, its function in neurons is unknown. We found that during development of mouse cortical neurons, SLK has a surprisingly specific role for proper elaboration of higher, ≥ 3rd, order dendrites both in cultured neurons and living mice. Moreover, SLK is required to maintain excitation-inhibition balance. Specifically, SLK knockdown causes a selective loss of inhibitory synapses and functional inhibition after postnatal day 15, while excitatory neurotransmission is unaffected. This mechanism may be relevant for human disease, as dysmorphic neurons within human cortical malformations exhibit significant loss of SLK expression. To uncover the signaling cascades underlying the action of SLK, we combined phosphoproteomics, protein interaction screens and single cell RNA seq. Overall, our data identifies SLK as a key regulator of both dendritic complexity during development and of inhibitory synapse maintenance.

SeminarNeuroscience

Integration of 3D human stem cell models derived from post-mortem tissue and statistical genomics to guide schizophrenia therapeutic development

Jennifer Erwin, Ph.D
Lieber Institute for Brain Development; Department of Neurology and Neuroscience; Johns Hopkins University School of Medicine
Mar 14, 2023

Schizophrenia is a neuropsychiatric disorder characterized by positive symptoms (such as hallucinations and delusions), negative symptoms (such as avolition and withdrawal) and cognitive dysfunction1. Schizophrenia is highly heritable, and genetic studies are playing a pivotal role in identifying potential biomarkers and causal disease mechanisms with the hope of informing new treatments. Genome-wide association studies (GWAS) identified nearly 270 loci with a high statistical association with schizophrenia risk; however each locus confers only a small increase in risk therefore it is difficult to translate these findings into understanding disease biology that can lead to treatments. Induced pluripotent stem cell (iPSC) models are a tractable system to translate genetic findings and interrogate mechanisms of pathogenesis. Mounting research with patient-derived iPSCs has proposed several neurodevelopmental pathways altered in SCZ, such as neural progenitor cell (NPC) proliferation, imbalanced differentiation of excitatory and inhibitory cortical neurons. However, it is unclear what exactly these iPS models recapitulate, how potential perturbations of early brain development translates into illness in adults and how iPS models that represent fetal stages can be utilized to further drug development efforts to treat adult illness. I will present the largest transcriptome analysis of post-mortem caudate nucleus in schizophrenia where we discovered that decreased presynaptic DRD2 autoregulation is the causal dopamine risk factor for schizophrenia (Benjamin et al, Nature Neuroscience 2022 https://doi.org/10.1038/s41593-022-01182-7). We developed stem cell models from a subset of the postmortem cohort to better understand the molecular underpinnings of human psychiatric disorders (Sawada et al, Stem Cell Research 2020). We established a method for the differentiation of iPS cells into ventral forebrain organoids and performed single cell RNAseq and cellular phenotyping. To our knowledge, this is the first study to evaluate iPSC models of SZ from the same individuals with postmortem tissue. Our study establishes that striatal neurons in the patients with SCZ carry abnormalities that originated during early brain development. Differentiation of inhibitory neurons is accelerated whereas excitatory neuronal development is delayed, implicating an excitation and inhibition (E-I) imbalance during early brain development in SCZ. We found a significant overlap of genes upregulated in the inhibitory neurons in SCZ organoids with upregulated genes in postmortem caudate tissues from patients with SCZ compared with control individuals, including the donors of our iPS cell cohort. Altogether, we demonstrate that ventral forebrain organoids derived from postmortem tissue of individuals with schizophrenia recapitulate perturbed striatal gene expression dynamics of the donors’ brains (Sawada et al, biorxiv 2022 https://doi.org/10.1101/2022.05.26.493589).

SeminarNeuroscience

Linking SYNGAP1 with Human-Specific Mechanisms of Neuronal Development

Pierre Vanderhaeghen, MD, PhD
VIB Center for Brain & Disease Research
Mar 8, 2023
SeminarNeuroscience

The dynamic behaviour of mRNAs and splicing proteins in developing axons

Corinne Houart
King's College London
Mar 28, 2021

Recent findings have revealed that mRNAs have a much more dynamic behaviour than initially described. This is particularly true in neurons, where mRNAs are transported to specific axonal and dendritic areas. The seminar will present our most recent findings unveiling complex mRNA processing dynamics driven by splicing proteins in developing axons.

SeminarNeuroscience

Physiological importance of phase separation: a case study in synapse formation

Kang Shen
HHMI, Stanford University
Sep 16, 2020

Synapse formation during neuronal development is critical to establish neural circuits and a nervous system1. Every presynapse builds a core active zone structure where ion channels are clustered and synaptic vesicles are released2. While the composition of active zones is well characterized2,3, how active zone proteins assemble together and recruit synaptic release machinery during development is not clear. Here, we find core active zone scaffold proteins SYD-2/Liprin-α and ELKS-1 phase separate during an early stage of synapse development, and later mature into a solid structure. We directly test the in vivo function of phase separation with mutants specifically lacking this activity. These mutant SYD-2 and ELKS-1 proteins remain enriched at synapses, but are defective in active zone assembly and synapse function. The defects are rescued with the introduction of a phase separation motif from an unrelated protein. In vitro, we reconstitute the SYD-2 and ELKS-1 liquid phase scaffold and find it is competent to bind and incorporate downstream active zone components. The fluidity of SYD-2 and ELKS-1 condensates is critical for efficient mixing and incorporation of active zone components. These data reveal that a developmental liquid phase of scaffold molecules is essential for synaptic active zone assembly before maturation into a stable final structure.

ePoster

Heterozygosity for neurodevelopmental disorder-associated TRIO variants leads to distinct deficits in neuronal development and function

Yevheniia Ishchenko, Amanda T. Jeng, Shufang Feng, Timothy Nottoli, Melissa G. Carrizales, Matthew J. Vitarelli, Ellen Corcoran, Cindy Manriquez-Rodriguez, Khanh Nguyen, Charles A. Greer, Samuel A. Myers, Anthony J. Koleske

FENS Forum 2024

ePoster

Neuronal development requires UFMylation

Catarina Perdigão, Josefa Torres, Janina Koch, Zehra Vural, Mateusz C. Ambrozkiewicz, JeongSeop Rhee, Nils Brose, Marilyn Tirard

FENS Forum 2024

ePoster

OPTOGENETIC STIMULATION OF SHSY-5Y CELLS AND ITS EFFECTS ON NEURONAL DEVELOPMENT IN 3D HYDROGEL SYSTEM

FENS Forum 2024

ePoster

Weighted generative network models of neuronal development

Kayton Rotenberg, Danyal Akarca, Duncan Astle

FENS Forum 2024