← Back

Neuronal Function

Topic spotlight
TopicWorld Wide

neuronal function

Discover seminars, jobs, and research tagged with neuronal function across World Wide.
17 curated items9 ePosters8 Seminars
Updated over 2 years ago
17 items · neuronal function
17 results
SeminarNeuroscience

Epigenomic (re)programming of the brain and behavior by ovarian hormones

Marija Kundakovic
Fordham University
May 1, 2023

Rhythmic changes in sex hormone levels across the ovarian cycle exert powerful effects on the brain and behavior, and confer female-specific risks for neuropsychiatric conditions. In this talk, Dr. Kundakovic will discuss the role of fluctuating ovarian hormones as a critical biological factor contributing to the increased depression and anxiety risk in women. Cycling ovarian hormones drive brain and behavioral plasticity in both humans and rodents, and the talk will focus on animal studies in Dr. Kundakovic’s lab that are revealing the molecular and receptor mechanisms that underlie this female-specific brain dynamic. She will highlight the lab’s discovery of sex hormone-driven epigenetic mechanisms, namely chromatin accessibility and 3D genome changes, that dynamically regulate neuronal gene expression and brain plasticity but may also prime the (epi)genome for psychopathology. She will then describe functional studies, including hormone replacement experiments and the overexpression of an estrous cycle stage-dependent transcription factor, which provide the causal link(s) between hormone-driven chromatin dynamics and sex-specific anxiety behavior. Dr. Kundakovic will also highlight an unconventional role that chromatin dynamics may have in regulating neuronal function across the ovarian cycle, including in sex hormone-driven X chromosome plasticity and hormonally-induced epigenetic priming. In summary, these studies provide a molecular framework to understand ovarian hormone-driven brain plasticity and increased female risk for anxiety and depression, opening new avenues for sex- and gender-informed treatments for brain disorders.

SeminarNeuroscience

Establishment and aging of the neuronal DNA methylation landscape in the hippocampus

Sara Zocher, PhD
German Center for Neurodegenerative Diseases (DZNE), Dresden
Apr 11, 2023

The hippocampus is a brain region with key roles in memory formation, cognitive flexibility and emotional control. Yet hippocampal function is impaired severely during aging and in neurodegenerative diseases, and impairments in hippocampal function underlie age-related cognitive decline. Accumulating evidence suggests that the deterioration of the neuron-specific epigenetic landscape during aging contributes to their progressive, age-related dysfunction. For instance, we have recently shown that aging is associated with pronounced alterations of neuronal DNA methylation patterns in the hippocampus. Because neurons are generated mostly during development with limited replacement in the adult brain, they are particularly long-lived cells and have to maintain their cell-type specific gene expression programs life-long in order to preserve brain function. Understanding the epigenetic mechanisms that underlie the establishment and long-term maintenance of neuron-specific gene expression programs, will help us to comprehend the sources and consequences of their age-related deterioration. In this talk, I will present our recent work that investigated the role of DNA methylation in the establishment of neuronal gene expression programs and neuronal function, using adult neurogenesis in the hippocampus as a model. I will then describe the effects of aging on the DNA methylation landscape in the hippocampus and discuss the malleability of the aging neuronal methylome to lifestyle and environmental stimulation.

SeminarNeuroscienceRecording

Off the rails - how pathological patterns of whole brain activity emerge in epileptic seizures

Richard Rosch
King's College London
Mar 14, 2023

In most brains across the animal kingdom, brain dynamics can enter pathological states that are recognisable as epileptic seizures. Yet usually, brain operate within certain constraints given through neuronal function and synaptic coupling, that will prevent epileptic seizure dynamics from emerging. In this talk, I will bring together different approaches to identifying how networks in the broadest sense shape brain dynamics. Using illustrative examples from intracranial EEG recordings, disorders characterised by molecular disruption of a single neurotransmitter receptor type, to single-cell recordings of whole-brain activity in the larval zebrafish, I will address three key questions - (1) how does the regionally specific composition of synaptic receptors shape ongoing physiological brain activity; (2) how can disruption of this regionally specific balance result in abnormal brain dynamics; and (3) which cellular patterns underly the transition into an epileptic seizure.

SeminarNeuroscienceRecording

Introducing dendritic computations to SNNs with Dendrify

Michalis Pagkalos
IMBB FORTH
Sep 6, 2022

Current SNNs studies frequently ignore dendrites, the thin membranous extensions of biological neurons that receive and preprocess nearly all synaptic inputs in the brain. However, decades of experimental and theoretical research suggest that dendrites possess compelling computational capabilities that greatly influence neuronal and circuit functions. Notably, standard point-neuron networks cannot adequately capture most hallmark dendritic properties. Meanwhile, biophysically detailed neuron models are impractical for large-network simulations due to their complexity, and high computational cost. For this reason, we introduce Dendrify, a new theoretical framework combined with an open-source Python package (compatible with Brian2) that facilitates the development of bioinspired SNNs. Dendrify, through simple commands, can generate reduced compartmental neuron models with simplified yet biologically relevant dendritic and synaptic integrative properties. Such models strike a good balance between flexibility, performance, and biological accuracy, allowing us to explore dendritic contributions to network-level functions while paving the way for developing more realistic neuromorphic systems.

SeminarNeuroscience

JAK/STAT regulation of the transcriptomic response during epileptogenesis

Amy Brooks-Kayal
Children's Hospital Colorado / UC Davis
Dec 14, 2021

Temporal lobe epilepsy (TLE) is a progressive disorder mediated by pathological changes in molecular cascades and neural circuit remodeling in the hippocampus resulting in increased susceptibility to spontaneous seizures and cognitive dysfunction. Targeting these cascades could prevent or reverse symptom progression and has the potential to provide viable disease-modifying treatments that could reduce the portion of TLE patients (>30%) not responsive to current medical therapies. Changes in GABA(A) receptor subunit expression have been implicated in the pathogenesis of TLE, and the Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) pathway has been shown to be a key regulator of these changes. The JAK/STAT pathway is known to be involved in inflammation and immunity, and to be critical for neuronal functions such as synaptic plasticity and synaptogenesis. Our laboratories have shown that a STAT3 inhibitor, WP1066, could greatly reduce the number of spontaneous recurrent seizures (SRS) in an animal model of pilocarpine-induced status epilepticus (SE). This suggests promise for JAK/STAT inhibitors as disease-modifying therapies, however, the potential adverse effects of systemic or global CNS pathway inhibition limits their use. Development of more targeted therapeutics will require a detailed understanding of JAK/STAT-induced epileptogenic responses in different cell types. To this end, we have developed a new transgenic line where dimer-dependent STAT3 signaling is functionally knocked out (fKO) by tamoxifen-induced Cre expression specifically in forebrain excitatory neurons (eNs) via the Calcium/Calmodulin Dependent Protein Kinase II alpha (CamK2a) promoter. Most recently, we have demonstrated that STAT3 KO in excitatory neurons (eNSTAT3fKO) markedly reduces the progression of epilepsy (SRS frequency) in the intrahippocampal kainate (IHKA) TLE model and protects mice from kainic acid (KA)-induced memory deficits as assessed by Contextual Fear Conditioning. Using data from bulk hippocampal tissue RNA-sequencing, we further discovered a transcriptomic signature for the IHKA model that contains a substantial number of genes, particularly in synaptic plasticity and inflammatory gene networks, that are down-regulated after KA-induced SE in wild-type but not eNSTAT3fKO mice. Finally, we will review data from other models of brain injury that lead to epilepsy, such as TBI, that implicate activation of the JAK/STAT pathway that may contribute to epilepsy development.

SeminarNeuroscience

The development of hunger

Marcelo Dietrich
Yale
Oct 17, 2021

All mammals transition from breastfeeding to independent feeding during the lactation period. In humans and other mammals, this critical transition is important for later in life metabolic control and, consequently, for the development of many chronic conditions. Here, Dr. Dietrich will discuss the work of his lab studying the function of hypothalamic neurons involved in homeostatic control during the transition from breastfeeding to independent feeding. His work illuminates novel properties of hypothalamic neurons in early life, suggesting mechanisms by which early life events shape homeostatic regulation throughout the individual’s lifespan.

SeminarNeuroscienceRecording

Activity dependent myelination: a mechanism for learning and regeneration?

Thóra Káradóttir
WT-MRC Stem Cell Institute, University of Cambridge
Oct 11, 2021

The CNS is responsive to an ever-changing environment. Until recently, studies of neural plasticity focused almost exclusively on functional and structural changes of neuronal synapses. In recent years, myelin plasticity has emerged as a potential modulator of neural networks. Myelination of previously unmyelinated axons, and changes in the structure on already-myelinated axons, can have large effects on network function. The heterogeneity of the extent of how axons in the CNS are myelinated offers diverse scope for dynamic myelin changes to fine-tune neural circuits. The traditionally held view of myelin as a passive insulator of axons is now changing to one of lifelong changes in myelin, modulated by neuronal activity and experience. Myelin, produced by oligodendrocytes (OLs), is essential for normal brain function, as it provides fast signal transmission, promotes synchronization of neuronal signals and helps to maintain neuronal function. OLs differentiate from oligodendrocyte precursor cells (OPCs), which are distributed throughout the adult brain, and myelination continues into late adulthood. OPCs can sense neuronal activity as they receive synaptic inputs from neurons and express voltage-gated ion channels and neurotransmitter receptors, and differentiate into myelinating OLs in response to changes in neuronal activity. This lecture will explore to what extent myelin plasticity occurs in adult animals, whether myelin changes occur in non-motor learning tasks, especially in learning and memory, and questions whether myelin plasticity and myelin regeneration are two sides of the same coin.

SeminarNeuroscienceRecording

Combining two mechanisms to produce neural firing rate homeostasis

Paul Miller
Brandeis University
Jun 10, 2021

The typical goal of homeostatic mechanisms is to ensure a system operates at or in the vicinity of a stable set point, where a particular measure is relatively constant and stable. Neural firing rate homeostasis is unusual in that a set point of fixed firing rate is at odds with the goal of a neuron to convey information, or produce timed motor responses, which require temporal variations in firing rate. Therefore, for a neuron, a range of firing rates is required for optimal function, which could, for example, be set by a dual system that controls both mean and variance of firing rate. We explore, both via simulations and analysis, how two experimentally measured mechanisms for firing rate homeostasis can cooperate to improve information processing and avoid the pitfall of pulling in different directions when their set points do not appear to match.

ePoster

The prix-fixe menu: a combinatorial code for neuronal function

Ari Benjamin, Xiaoyin Chen, Anthony Zador

COSYNE 2023

ePoster

Cannabidiol modulated compensation of radiation-induced alterations in hippocampal synaptic plasticity and neuronal function

Markus Ballmann, Lisa Bauer, Bayan Alkotub, Gabriele Multhoff, Gerhard Rammes

FENS Forum 2024

ePoster

The effects of 40Hz ultrasound stimulation on neuronal function

Deniz Tonyali, James Jiang, Konoha Izaki-Lee, Bruce Drinkwater, Daniel Whitcomb

FENS Forum 2024

ePoster

Investigating the role of mitochondrial regulator Zc3h10 on neuronal function

Meral Celikag, Silvia Pedretti, Silvia Pelucchi, Laura D'Andrea, Elisa Zianni, Monica Di Luca, Elena Marcello, Nico Mitro

FENS Forum 2024

ePoster

Lactate influences the m6A RNA methylation of genes involved in neuronal function

Fathia Ben-Rached, Anel Lopez-Gonzalez, Gabriel Herrera-Lopez, John S. Girgis, Pierre J. Magistretti, Hubert Fiumelli

FENS Forum 2024

ePoster

NeuID: A novel lncRNA exclusively expressed in the brain and controls neuronal function and identity

Ranjit Pradhan, M Sadman Sakib, Iga Grządzielewska, Eren Diniz, Dennis M. Krüger, Sophie Schröder, Susanne Burkhardt, Anna-Lena Schuetz, Farahnaz Sananbenesi, Andre Fischer

FENS Forum 2024

ePoster

Oligodendrocytes produce amyloid beta, and blocking its production restores neuronal function in an Alzheimer's mouse model in vivo

Rikesh Rajani, Robert Ellingford, Mariam Hellmuth, Samuel Harris, Orjona Taso, David Graykowski, Francesca Lam, Charles Arber, Emre Fertan, John Danial, David Klenerman, Robert Vassar, Selina Wray, Carlo Sala Frigerio, Marc Aurel Busche

FENS Forum 2024

ePoster

Optimization of a multiplexed, cell-based assay of neuronal function

Johny Pires, Timm Schlegel, Daniel Millard, Austin Passaro, Ben Streeter

FENS Forum 2024

ePoster

The role of DNMT3A in neuronal function and its potential for reversing cognitive deficits in TBRS

Stefanos Loizou, Marlene Rosa Luckow, Harrison Gabel, Ana M.M Oliveira

FENS Forum 2024