← Back

Neuronal Migration

Topic spotlight
TopicWorld Wide

neuronal migration

Discover seminars, jobs, and research tagged with neuronal migration across World Wide.
5 curated items4 Seminars1 ePoster
Updated over 3 years ago
5 items · neuronal migration
5 results
SeminarPhysics of Life

Retinal neurogenesis and lamination: What to become, where to become it and how to move from there!

Caren Norden
Instituto Gulbenkian de Ciência
Mar 24, 2022

The vertebrate retina is an important outpost of the central nervous system, responsible for the perception and transmission of visual information. It consists of five different types of neurons that reproducibly laminate into three layers, a process of crucial importance for the organ’s function. Unsurprisingly, impaired fate decisions as well as impaired neuronal migrations and lamination lead to impaired retinal function. However, how processes are coordinated at the cellular and tissue level and how variable or robust retinal formation is, is currently still underexplored. In my lab, we aim to shed light on these questions from different angles, studying on the one hand differentiation phenomena and their variability and on the other hand the downstream migration and lamination phenomena. We use zebrafish as our main model system due to its excellent possibilities for live imaging and quantitative developmental biology. More recently we also started to use human retinal organoids as a comparative system. We further employ cross disciplinary approaches to address these issues combining work of cell and developmental biology, biomechanics, theory and computer science. Together, this allows us to integrate cell with tissue-wide phenomena and generate an appreciation of the reproducibility and variability of events.

SeminarNeuroscienceRecording

Malformation of cortical development: the genesis of epileptogenic networks

Alfonso Represa
INSERM, Institut de Neurobiologie de la Méditerranée
Jun 1, 2021

Malformations of cortical development (MCDs) result from alterations of one or combined developmental steps, including progenitors proliferation, neuronal migration and differentiation. They are important cause of childhood epilepsy and frequently associate cognitive deficits and behavioral alterations. Though the genetic basis of MCDs have known prominent progress during the past decade, including the identification of somatic, mosaic mutations responsible for focal MCDs, the pathophysiological mechanisms linking malformations to epileptogenesis remain elusive. In this seminar I will present data from my team and from the literature addressing this topic in two different MCDs types, the subcortical band heterotopia as a model of cortical migration defect and mTOR- dependent MCDs , that characterize by cortical dyslamination and neuronal differentiation defects.

SeminarNeuroscienceRecording

Following neuronal trajectories

Silvia Cappello
Max Planck Institute of Psychiatry
May 13, 2020

Malformations of the human cerebral cortex represent a major cause of developmental disabilities. To date, animal models carrying mutations of genes so far identified in human patients with brain malformations only partially recapitulate the expected phenotypes and therefore do not provide reliable models to entirely understand the molecular and cellular mechanisms responsible for these disorders. Hence, we combine the in vivo mouse model and the human brain organoids in order to better comprehend the mechanisms involved in the migration of neurons during human development and tackle the causes of neurodevelopmental disorders. Our results show that we can model human brain development and disorders using human brain organoids and contribute to open new avenues to bridge the gap of knowledge between human brain malformations and existing animal models.

SeminarNeuroscienceRecording

Fate and freedom in developing neocortical circuits

Denis Jabaudon
University of Geneva
Apr 22, 2020

During brain development, neurons are born in specialized niches and migrate to target regions where they assemble to form the circuits that underlie mammalian behaviour. During their journey, neurons follow cell-intrinsic, genetic programs transmitted by their mother cells but also environmental cues, which together drive their maturation. Here, focusing on the neocortex, I will discuss recent findings from our laboratory in which we untangle and manipulate the programs at play in progenitors and their daughter neurons to better understand the emergence of cellular diversity in the developing brain.

ePoster

Novel lissencephaly-associated DCX variants affect microtubule binding, dynamics, and neuronal migration

Jun-Ru Lin, Ju-Fang Cheng, Yo-Tsen Liu, Ting-Rong Hsu, Kao-Min Lin, Chien Chen, Chia-Ling Lin, Meng-Han Tsai, Jin-Wu Tsai

FENS Forum 2024