Neuronal Recordings
neuronal recordings
An open-source miniature two-photon microscope for large-scale calcium imaging in freely moving mice
Due to the unsuitability of benchtop imaging for tasks that require unrestrained movement, investigators have tried, for almost two decades, to develop miniature 2P microscopes-2P miniscopes–that can be carried on the head of freely moving animals. In this talk, I would first briefly review the development history of this technique, and then report our latest progress on developing the new generation of 2P miniscopes, MINI2P, that overcomes the limits of previous versions by both meeting requirements for fatigue-free exploratory behavior during extended recording periods and satisfying demands for further increasing the cell yield by an order of magnitude, to thousands of neurons. The performance and reliability of MINI2P are validated by recordings of spatially tuned neurons in three brain regions and in three behavioral assays. All information about MINI2P is open access, with instruction videos, code, and manuals on public repositories, and workshops will be organized to help new users getting started. MINI2P permits large-scale and high-resolution calcium imaging in freely-moving mice, and opens the door to investigating brain functions during unconstrained natural behaviors.
Expectation of self-generated sounds drives predictive processing in mouse auditory cortex
Sensory stimuli are often predictable consequences of one’s actions, and behavior exerts a correspondingly strong influence over sensory responses in the brain. Closed-loop experiments with the ability to control the sensory outcomes of specific animal behaviors have revealed that neural responses to self-generated sounds are suppressed in the auditory cortex, suggesting a role for prediction in local sensory processing. However, it is unclear whether this phenomenon derives from a precise movement-based prediction or how it affects the neural representation of incoming stimuli. We address these questions by designing a behavioral paradigm where mice learn to expect the predictable acoustic consequences of a simple forelimb movement. Neuronal recordings from auditory cortex revealed suppression of neural responses that was strongest for the expected tone and specific to the time of the sound-associated movement. Predictive suppression in the auditory cortex was layer-specific, preceded by the arrival of movement information, and unaffected by behavioral relevance or reward association. These findings illustrate that expectation, learned through motor-sensory experience, drives layer-specific predictive processing in the mouse auditory cortex.