← Back

Neuronal Remodeling

Topic spotlight
TopicWorld Wide

neuronal remodeling

Discover seminars, jobs, and research tagged with neuronal remodeling across World Wide.
2 curated items2 Seminars
Updated over 3 years ago
2 items · neuronal remodeling
2 results
SeminarNeuroscience

How are nervous systems remodeled in complex metazoans?

Marc Freeman
Oregon Health & Science University, Portland OR, USA
May 11, 2022

Early in development the nervous system is constructed with far too many neurons that make an excessive number of synaptic connections.  Later, a wave of neuronal remodeling radically reshapes nervous system wiring and cell numbers through the selective elimination of excess synapses, axons and dendrites, and even whole neurons.  This remodeling is widespread across the nervous system, extensive in terms of how much individual brain regions can change (e.g. in some cases 50% of neurons integrated into a brain circuit are eliminated), and thought to be essential for optimizing nervous system function.  Perturbations of neuronal remodeling are thought to underlie devastating neurodevelopmental disorders including autism spectrum disorder, schizophrenia, and epilepsy.  This seminar will discuss our efforts to use the relatively simple nervous system of Drosophila to understand the mechanistic basis by which cells, or parts of cells, are specified for removal and eliminated from the nervous system.

SeminarNeuroscience

Nr4a1-mediated morphological adaptations in Ventral Pallidal projections to Mediodorsal Thalamus support cocaine intake and relapse-like behaviors

Michel Engeln
Institute of Neurodegenerative Diseases, University of Bordeaux, Bordeaux, France
Mar 18, 2021

Growing evidence suggests the ventral pallidum (VP) is critical for drug intake and seeking behaviors. Receiving dense projections from the nucleus accumbens as well as dopamine inputs from the midbrain, the VP plays a central role in the control of motivated behaviors. Repeated exposure to cocaine is known to alter VP neuronal firing and neurotransmission. Surprisingly, there is limited information on the molecular adaptations occurring in VP neurons following cocaine intake.To provide insights into cocaine-induced transcriptional alterations we performed RNA-sequencing on VP of mice following cocaine self-administration. Gene Ontology analysis pointed toward alterations in dendrite- and spinerelated genes. Subsequent transcriptional regulator analysis identified the transcription factor Nr4a1 as a common regulator for these sets of morphology-related genes.Consistent with the central role of the VP in reward, its neurons project to several key regions associated with cocaine-mediated behaviors. We thus assessed Nr4a1 expression levels in various projection populations.Following cocaine self-administration, VP neurons projecting to the mediodorsal thalamus (MDT) showed significantly increased Nr4a1 levels. To further investigate the role of Nr4a1 in cocaine intake and relapse, we bidirectionally manipulated its expression levels selectively in VP neurons projecting to the MDT. Increasing Nr4a1 levels resulted in enhanced relapse-like behaviors accompanied by a blockage of cocaine-induced spinogenesis.However, decreasing Nr4a1expression levels completely abolished cocaine intake and consequential relapse-like behaviors. Together, our preliminary findings suggest that drug-induced neuronal remodeling in pallido-thalamic circuits is critical for cocaine intake and relapse-like behaviors.