← Back

Neuropixels

Topic spotlight
TopicWorld Wide

neuropixels

Discover seminars, jobs, and research tagged with neuropixels across World Wide.
18 curated items8 Positions8 Seminars2 ePosters
Updated 1 day ago
18 items · neuropixels
18 results
Position

Dr Jonathan Tang

Seattle Children’s Research Institute
Seattle, USA
Dec 5, 2025

This position will focus on the neural mechanisms underlying action learning in mice. Scientifically the project aims to understand the neural circuits, activities and behavioral dynamics behind how animals learn what actions to take for reward. Dopaminergic systems and associated circuitries will be the focus of investigation. This lab integrates wireless inertial sensors, closed loop algorithms, optogenetics and neural recording to pursue this goal.

Position

Dr Marc Aurel Busche & Prof David Sharp

University College London & Imperial College London
London
Dec 5, 2025

This is a joint postdoctoral position between Prof David Sharp’s laboratory (based at the UK DRI CR&T Centre), focused on the long-term neurodegenerative effects of traumatic brain injury, and Dr Marc Aurel Busche’s laboratory (based at the UK DRI at UCL), which has been at the forefront of developing tools permitting multi-scale and multi-modal monitoring of large-scale neural circuits in models of dementia. The main goal of the project will be to examine the effects of traumatic brain injury on neuronal circuit and neurovascular function in vivo, how this may accelerate molecular and cellular processes linked to Alzheimer’s Disease (the most common cause of dementia) and determine whether the pathophysiology is reversible. The project will involve recording neuronal activity and vascular dynamics using state of the art two-photon and electrophysiological (Neuropixels) methods and also linking this to available human datasets (e.g., fMRI). The successful candidate will be self-directed with excellent research skills, and capable of working collaboratively within a team of international multidisciplinary researchers, while displaying independent thinking and initiative. This is an outstanding opportunity to work independently on a high impact, state-of-the-art collaborative and cross-species project in a stimulating and vibrant research environment. The post is available immediately and is funded by a UK DRI Cross-Centre Postdoctoral award for two years in the first instance. For more information, and to apply please see: https://bit.ly/3qOulVp

PositionNeuroscience

Peter C. Petersen

Department of Neuroscience, University of Copenhagen
University of Copenhagen, Blegdamsvej 3B, building 33.3.52. 2200 Copenhagen, Denmark
Dec 5, 2025

The postdoc position is focused on the development of BrainSTEM, a web application designed as an electronic lab notebook for describing neurophysiological experiments as well as a data-sharing platform for the community. The role involves the design of a standard language for describing experimental neuroscience, semantic search functionality, stronger adoption of the FAIR principles, and stimulating and supporting community uptake. The project is primarily funded by the NIH, through the Brain Initiative U19 Oxytocin grant. The project will include occasional travels, e.g., to New York (NYU), Brain Initiate meetings, SfN, FENS, and to pilot user labs.

SeminarNeuroscience

Spike train structure of cortical transcriptomic populations in vivo

Kenneth Harris
UCL, UK
Oct 28, 2025

The cortex comprises many neuronal types, which can be distinguished by their transcriptomes: the sets of genes they express. Little is known about the in vivo activity of these cell types, particularly as regards the structure of their spike trains, which might provide clues to cortical circuit function. To address this question, we used Neuropixels electrodes to record layer 5 excitatory populations in mouse V1, then transcriptomically identified the recorded cell types. To do so, we performed a subsequent recording of the same cells using 2-photon (2p) calcium imaging, identifying neurons between the two recording modalities by fingerprinting their responses to a “zebra noise” stimulus and estimating the path of the electrode through the 2p stack with a probabilistic method. We then cut brain slices and performed in situ transcriptomics to localize ~300 genes using coppaFISH3d, a new open source method, and aligned the transcriptomic data to the 2p stack. Analysis of the data is ongoing, and suggests substantial differences in spike time coordination between ET and IT neurons, as well as between transcriptomic subtypes of both these excitatory types.

SeminarNeuroscience

A specialized role for entorhinal attractor dynamics in combining path integration and landmarks during navigation

Malcolm Campbell
Harvard
Mar 8, 2023

During navigation, animals estimate their position using path integration and landmarks. In a series of two studies, we used virtual reality and electrophysiology to dissect how these inputs combine to generate the brain’s spatial representations. In the first study (Campbell et al., 2018), we focused on the medial entorhinal cortex (MEC) and its set of navigationally-relevant cell types, including grid cells, border cells, and speed cells. We discovered that attractor dynamics could explain an array of initially puzzling MEC responses to virtual reality manipulations. This theoretical framework successfully predicted both MEC grid cell responses to additional virtual reality manipulations, as well as mouse behavior in a virtual path integration task. In the second study (Campbell*, Attinger* et al., 2021), we asked whether these principles generalize to other navigationally-relevant brain regions. We used Neuropixels probes to record thousands of neurons from MEC, primary visual cortex (V1), and retrosplenial cortex (RSC). In contrast to the prevailing view that “everything is everywhere all at once,” we identified a unique population of MEC neurons, overlapping with grid cells, that became active with striking spatial periodicity while head-fixed mice ran on a treadmill in darkness. These neurons exhibited unique cue-integration properties compared to other MEC, V1, or RSC neurons: they remapped more readily in response to conflicts between path integration and landmarks; they coded position prospectively as opposed to retrospectively; they upweighted path integration relative to landmarks in conditions of low visual contrast; and as a population, they exhibited a lower-dimensional activity structure. Based on these results, our current view is that MEC attractor dynamics play a privileged role in resolving conflicts between path integration and landmarks during navigation. Future work should include carefully designed causal manipulations to rigorously test this idea, and expand the theoretical framework to incorporate notions of uncertainty and optimality.

SeminarNeuroscienceRecording

NMC4 Short Talk: Novel population of synchronously active pyramidal cells in hippocampal area CA1

Dori Grijseels (they/them)
University of Sussex
Dec 1, 2021

Hippocampal pyramidal cells have been widely studied during locomotion, when theta oscillations are present, and during short wave ripples at rest, when replay takes place. However, we find a subset of pyramidal cells that are preferably active during rest, in the absence of theta oscillations and short wave ripples. We recorded these cells using two-photon imaging in dorsal CA1 of the hippocampus of mice, during a virtual reality object location recognition task. During locomotion, the cells show a similar level of activity as control cells, but their activity increases during rest, when this population of cells shows highly synchronous, oscillatory activity at a low frequency (0.1-0.4 Hz). In addition, during both locomotion and rest these cells show place coding, suggesting they may play a role in maintaining a representation of the current location, even when the animal is not moving. We performed simultaneous electrophysiological and calcium recordings, which showed a higher correlation of activity between the LFO and the hippocampal cells in the 0.1-0.4 Hz low frequency band during rest than during locomotion. However, the relationship between the LFO and calcium signals varied between electrodes, suggesting a localized effect. We used the Allen Brain Observatory Neuropixels Visual Coding dataset to further explore this. These data revealed localised low frequency oscillations in CA1 and DG during rest. Overall, we show a novel population of hippocampal cells, and a novel oscillatory band of activity in hippocampus during rest.

SeminarNeuroscienceRecording

NMC4 Short Talk: Stretching and squeezing of neuronal log firing rate distribution by psychedelic and intrinsic brain state transitions

Bradley Dearnly
University of Sheffield
Dec 1, 2021

How psychedelic drugs change the activity of cortical neuronal populations is not well understood. It is also not clear which changes are specific to transition into the psychedelic brain state and which are shared with other brain state transitions. Here, we used Neuropixels probes to record from large populations of neurons in prefrontal cortex of mice given the psychedelic drug TCB-2. The primary effect of drug ingestion was stretching of the distribution of log firing rates of the recorded population. This phenomenon was previously observed across transitions between sleep and wakefulness, which prompted us to examine how common it is. We found that modulation of the width of the log-rate distribution of a neuronal population occurred in multiple areas of the cortex and in the hippocampus even in awake drug-free mice, driven by intrinsic fluctuations in their arousal level. Arousal, however, did not explain the stretching of the log-rate distribution by TCB-2. In both psychedelic and intrinsically occurring brain state transitions, the stretching or squeezing of the log-rate distribution of an entire neuronal population were the result of a more close overlap between log-rate distributions of the upregulated and downregulated subpopulations in one brain state compared to the other brain state. Often, we also observed that the log-rate distribution of the downregulated subpopulation was stretched, whereas the log-rate distribution of the upregulated subpopulation was squeezed. In both subpopulations, the stretching and squeezing were a signature of a greater relative impact of the brain state transition on the rates of the slow-firing neurons. These findings reveal a generic pattern of reorganisation of neuronal firing rates by different kinds of brain state transitions.

SeminarNeuroscience

Advancements in multielectrode recording techniques in neurophysiology: from wire probes to neuropixels

Sylvia Schröder
University of Sussex
Aug 11, 2021

Join us for a comprehensive introduction to multielectrode recording technologies for in vivo neurophysiology. Whether you are new to the field or have experience with one type of technology, this webinar will provide you with information about a variety of technologies, with a main focus on Neuropixels probes. Dr Kris Schoepfer, US Product Specialist at Scientifica, will provide an overview of multielectrode technologies available to record from one or more brain areas simultaneously, including: DIY multielectrode probes; Tetrodes / Hyperdrives; Silicon probes; Neuropixels. Dr Sylvia Schröder, University of Sussex, will delve deeper into the advantages of Neuropixels, highlighting the value of channel depth and the types of new biological insights that can be explored thanks to the advancements this technology brings. Presenting exciting data from the optic tract and superior colliculus, Sylvia will also discuss how Neuropixels recordings can be combined with optogenetics, and how histology can be used to identify the location of probes.

SeminarNeuroscienceRecording

A no-report paradigm reveals that face cells multiplex consciously perceived and suppressed stimuli

Janis Hesse
California Institute of Technology
Feb 25, 2021

Having conscious experience is arguably the most important reason why it matters to us whether we are alive or dead. A powerful paradigm to identify neural correlates of consciousness is binocular rivalry, wherein a constant visual stimulus evokes a varying conscious percept. It has recently been suggested that activity modulations observed during rivalry may represent the act of report rather than the conscious percept itself. Here, we performed single-unit recordings from face patches in macaque inferotemporal (IT) cortex using a novel no-report paradigm in which the animal’s conscious percept was inferred from eye movements. These experiments reveal two new results concerning the neural correlates of consciousness. First, we found that high proportions of IT neurons represented the conscious percept even without active report. Using high-channel recordings, including a new 128-channel Neuropixels-like probe, we were able to decode the conscious percept on single trials. Second, we found that even on single trials, modulation to rivalrous stimuli was weaker than that to unambiguous stimuli, suggesting that cells may encode not only the conscious percept but also the suppressed stimulus. To test this hypothesis, we varied the identity of the suppressed stimulus during binocular rivalry; we found that indeed, we could decode not only the conscious percept but also the suppressed stimulus from neural activity. Moreover, the same cells that were strongly modulated by the conscious percept also tended to be strongly modulated by the suppressed stimulus. Together, our findings indicate that (1) IT cortex possesses a true neural correlate of consciousness even in the absence of report, and (2) this correlate consists of a population code wherein single cells multiplex representation of the conscious percept and veridical physical stimulus, rather than a subset of cells perfectly reflecting consciousness.

ePoster

Density-based Neural Decoding using Spike Localization for Neuropixels Recordings

Yizi Zhang, Tianxiao He, Julien Boussard, Cole Hurwitz, Erdem Varol, Charlie Windolf, Olivier Winter, Matt Whiteway, The International Brain Lab The International Brain Lab, Liam Paninski

COSYNE 2023

ePoster

Power Pixels: A Python-based pipeline for processing of Neuropixels recordings

Jeroen Bos, Guido T Meijer, Francesco P Battaglia

FENS Forum 2024