Neuropixels Probes
neuropixels probes
Soledad Gonzalo Cogno
The position will be part of my group, and the project is in collaboration with the Moser lab (KISN). The position will be for 2 years. The successful candidate will combine the analysis of large-scale neural population recordings obtained with Neuropixels probes (the data will be collected by other team members) with the development of computational models.
Alberto Bacci
The successful candidate will work on inhibitory circuits of the prefrontal cortex of mice. In particular, they will study the properties and plasticity of synapses connecting a rich diversity of prefrontal cortical neuron subtypes. The candidate will also perform and analyze electrophysiological recordings in vivo, using high-density Neuropixels probes. This project is part of an ERA-Net NEURON international consortium and focuses on the rich diversity of GABAergic interneurons and their impact on the functional states of prefrontal cortical networks in healthy and diseased states.
A specialized role for entorhinal attractor dynamics in combining path integration and landmarks during navigation
During navigation, animals estimate their position using path integration and landmarks. In a series of two studies, we used virtual reality and electrophysiology to dissect how these inputs combine to generate the brain’s spatial representations. In the first study (Campbell et al., 2018), we focused on the medial entorhinal cortex (MEC) and its set of navigationally-relevant cell types, including grid cells, border cells, and speed cells. We discovered that attractor dynamics could explain an array of initially puzzling MEC responses to virtual reality manipulations. This theoretical framework successfully predicted both MEC grid cell responses to additional virtual reality manipulations, as well as mouse behavior in a virtual path integration task. In the second study (Campbell*, Attinger* et al., 2021), we asked whether these principles generalize to other navigationally-relevant brain regions. We used Neuropixels probes to record thousands of neurons from MEC, primary visual cortex (V1), and retrosplenial cortex (RSC). In contrast to the prevailing view that “everything is everywhere all at once,” we identified a unique population of MEC neurons, overlapping with grid cells, that became active with striking spatial periodicity while head-fixed mice ran on a treadmill in darkness. These neurons exhibited unique cue-integration properties compared to other MEC, V1, or RSC neurons: they remapped more readily in response to conflicts between path integration and landmarks; they coded position prospectively as opposed to retrospectively; they upweighted path integration relative to landmarks in conditions of low visual contrast; and as a population, they exhibited a lower-dimensional activity structure. Based on these results, our current view is that MEC attractor dynamics play a privileged role in resolving conflicts between path integration and landmarks during navigation. Future work should include carefully designed causal manipulations to rigorously test this idea, and expand the theoretical framework to incorporate notions of uncertainty and optimality.
NMC4 Short Talk: Stretching and squeezing of neuronal log firing rate distribution by psychedelic and intrinsic brain state transitions
How psychedelic drugs change the activity of cortical neuronal populations is not well understood. It is also not clear which changes are specific to transition into the psychedelic brain state and which are shared with other brain state transitions. Here, we used Neuropixels probes to record from large populations of neurons in prefrontal cortex of mice given the psychedelic drug TCB-2. The primary effect of drug ingestion was stretching of the distribution of log firing rates of the recorded population. This phenomenon was previously observed across transitions between sleep and wakefulness, which prompted us to examine how common it is. We found that modulation of the width of the log-rate distribution of a neuronal population occurred in multiple areas of the cortex and in the hippocampus even in awake drug-free mice, driven by intrinsic fluctuations in their arousal level. Arousal, however, did not explain the stretching of the log-rate distribution by TCB-2. In both psychedelic and intrinsically occurring brain state transitions, the stretching or squeezing of the log-rate distribution of an entire neuronal population were the result of a more close overlap between log-rate distributions of the upregulated and downregulated subpopulations in one brain state compared to the other brain state. Often, we also observed that the log-rate distribution of the downregulated subpopulation was stretched, whereas the log-rate distribution of the upregulated subpopulation was squeezed. In both subpopulations, the stretching and squeezing were a signature of a greater relative impact of the brain state transition on the rates of the slow-firing neurons. These findings reveal a generic pattern of reorganisation of neuronal firing rates by different kinds of brain state transitions.
Large-scale approaches for distributed circuits underlying visual decision-making
Mammalian vision and visually-guided behavior relies on neurons distributed across diverse brain regions. In this talk I will describe our efforts to create tools that allow us to measure activity from these distributed circuits - Neuropixels probes for large-scale electrophysiology - and our findings from studies deploying these tools to study visual detection and discrimination in mice.
Advancements in multielectrode recording techniques in neurophysiology: from wire probes to neuropixels
Join us for a comprehensive introduction to multielectrode recording technologies for in vivo neurophysiology. Whether you are new to the field or have experience with one type of technology, this webinar will provide you with information about a variety of technologies, with a main focus on Neuropixels probes. Dr Kris Schoepfer, US Product Specialist at Scientifica, will provide an overview of multielectrode technologies available to record from one or more brain areas simultaneously, including: DIY multielectrode probes; Tetrodes / Hyperdrives; Silicon probes; Neuropixels. Dr Sylvia Schröder, University of Sussex, will delve deeper into the advantages of Neuropixels, highlighting the value of channel depth and the types of new biological insights that can be explored thanks to the advancements this technology brings. Presenting exciting data from the optic tract and superior colliculus, Sylvia will also discuss how Neuropixels recordings can be combined with optogenetics, and how histology can be used to identify the location of probes.