Neuroscience Research
neuroscience research
John D. Murray
The Swartz Program for Theoretical Neuroscience at Yale University invites applications for up to two postdoctoral positions in Theoretical and Computational Neuroscience, with flexible start date in 2022. Competitive candidates include those with a strong quantitative background who wish to gain neuroscience research experience. We especially encourage candidates with an interest in collaborating directly with experimental neuroscientists. The candidates will be expected to perform theoretical/computational studies relevant to one or more laboratories affiliated with the Swartz Program at Yale.
OpenNeuro FitLins GLM: An Accessible, Semi-Automated Pipeline for OpenNeuro Task fMRI Analysis
In this talk, I will discuss the OpenNeuro Fitlins GLM package and provide an illustration of the analytic workflow. OpenNeuro FitLins GLM is a semi-automated pipeline that reduces barriers to analyzing task-based fMRI data from OpenNeuro's 600+ task datasets. Created for psychology, psychiatry and cognitive neuroscience researchers without extensive computational expertise, this tool automates what is largely a manual process and compilation of in-house scripts for data retrieval, validation, quality control, statistical modeling and reporting that, in some cases, may require weeks of effort. The workflow abides by open-science practices, enhancing reproducibility and incorporates community feedback for model improvement. The pipeline integrates BIDS-compliant datasets and fMRIPrep preprocessed derivatives, and dynamically creates BIDS Statistical Model specifications (with Fitlins) to perform common mass univariate [GLM] analyses. To enhance and standardize reporting, it generates comprehensive reports which includes design matrices, statistical maps and COBIDAS-aligned reporting that is fully reproducible from the model specifications and derivatives. OpenNeuro Fitlins GLM has been tested on over 30 datasets spanning 50+ unique fMRI tasks (e.g., working memory, social processing, emotion regulation, decision-making, motor paradigms), reducing analysis times from weeks to hours when using high-performance computers, thereby enabling researchers to conduct robust single-study, meta- and mega-analyses of task fMRI data with significantly improved accessibility, standardized reporting and reproducibility.
Astrocytes release glutamate by regulated exocytosis in health and disease
Astrocytes release glutamate by regulated exocytosis in health and disease Vladimir Parpura, International Translational Neuroscience Research Institute, Zhejiang Chinese Medical University, Hangzhou, P.R. China Parpura will present you with the evidence that astrocytes, a subtype of glial cells in the brain, can exocytotically release the neurotransmitter glutamate and how this release is regulated. Spatiotemporal characteristic of vesicular fusion that underlie glutamate release in astrocytes will be discussed. He will also present data on a translational project in which this release pathway can be targeted for the treatment of glioblastoma, the deadliest brain cancer.
Trends in NeuroAI - SwiFT: Swin 4D fMRI Transformer
Trends in NeuroAI is a reading group hosted by the MedARC Neuroimaging & AI lab (https://medarc.ai/fmri). Title: SwiFT: Swin 4D fMRI Transformer Abstract: Modeling spatiotemporal brain dynamics from high-dimensional data, such as functional Magnetic Resonance Imaging (fMRI), is a formidable task in neuroscience. Existing approaches for fMRI analysis utilize hand-crafted features, but the process of feature extraction risks losing essential information in fMRI scans. To address this challenge, we present SwiFT (Swin 4D fMRI Transformer), a Swin Transformer architecture that can learn brain dynamics directly from fMRI volumes in a memory and computation-efficient manner. SwiFT achieves this by implementing a 4D window multi-head self-attention mechanism and absolute positional embeddings. We evaluate SwiFT using multiple large-scale resting-state fMRI datasets, including the Human Connectome Project (HCP), Adolescent Brain Cognitive Development (ABCD), and UK Biobank (UKB) datasets, to predict sex, age, and cognitive intelligence. Our experimental outcomes reveal that SwiFT consistently outperforms recent state-of-the-art models. Furthermore, by leveraging its end-to-end learning capability, we show that contrastive loss-based self-supervised pre-training of SwiFT can enhance performance on downstream tasks. Additionally, we employ an explainable AI method to identify the brain regions associated with sex classification. To our knowledge, SwiFT is the first Swin Transformer architecture to process dimensional spatiotemporal brain functional data in an end-to-end fashion. Our work holds substantial potential in facilitating scalable learning of functional brain imaging in neuroscience research by reducing the hurdles associated with applying Transformer models to high-dimensional fMRI. Speaker: Junbeom Kwon is a research associate working in Prof. Jiook Cha’s lab at Seoul National University. Paper link: https://arxiv.org/abs/2307.05916
Fidelity and Replication: Modelling the Impact of Protocol Deviations on Effect Size
Cognitive science and cognitive neuroscience researchers have agreed that the replication of findings is important for establishing which ideas (or theories) are integral to the study of cognition across the lifespan. Recently, high-profile papers have called into question findings that were once thought to be unassailable. Much attention has been paid to how p-hacking, publication bias, and sample size are responsible for failed replications. However, much less attention has been paid to the fidelity by which researchers enact study protocols. Researchers conducting education or clinical trials are aware of the importance in fidelity – or the extent to which the protocols are delivered in the same way across participants. Nevertheless, this idea has not been applied to cognitive contexts. This seminar discusses factors that impact the replicability of findings alongside recent models suggesting that even small fidelity deviations have real impacts on the data collected.
Research Data Management in neuroimaging
This set of short webinars will provide neuroscience researchers working in a neuroimaging setting with practical tips on strengthening credibility at different stages of the research project. Each webinar will be hosted by Cassandra Gould Van Praag from the Wellcome Centre for Integrative Neuroimaging.
Data privacy for neuroimaging
This set of short webinars will provide neuroscience researchers working in a neuroimaging setting with practical tips on strengthening credibility at different stages of the research project. Each webinar will be hosted by Cassandra Gould Van Praag from the Wellcome Centre for Integrative Neuroimaging.
Preregistration in neuroimaging
This set of short webinars will provide neuroscience researchers working in a neuroimaging setting with practical tips on strengthening credibility at different stages of the research project. Each webinar will be hosted by Cassandra Gould Van Praag from the Wellcome Centre for Integrative Neuroimaging.
Modern Approaches to Behavioural Analysis
The goal of neuroscience is to understand how the nervous system controls behaviour, not only in the simplified environments of the lab, but also in the natural environments for which nervous systems evolved. In pursuing this goal, neuroscience research is supported by an ever-larger toolbox, ranging from optogenetics to connectomics. However, often these tools are coupled with reductionist approaches for linking nervous systems and behaviour. This course will introduce advanced techniques for measuring and analysing behaviour, as well as three fundamental principles as necessary to understanding biological behaviour: (1) morphology and environment; (2) action-perception closed loops and purpose; and (3) individuality and historical contingencies [1]. [1] Gomez-Marin, A., & Ghazanfar, A. A. (2019). The life of behavior. Neuron, 104(1), 25-36
How People Form Beliefs
In this talk I will present our recent behavioural and neuroscience research on how the brain motivates itself to form particular beliefs and why it does so. I will propose that the utility of a belief is derived from the potential outcomes associated with holding it. Outcomes can be internal (e.g., positive/negative feelings) or external (e.g., material gain/loss), and only some are dependent on belief accuracy. We show that belief change occurs when the potential outcomes of holding it alters, for example when moving from a safe environment to a threatening environment. Our findings yield predictions about how belief formation alters as a function of mental health. We test these predictions using a linguistic analysis of participants’ web searches ‘in the wild’ to quantify the affective properties of information they consume and relate those to reported psychiatric symptoms. Finally, I will present a study in which we used our framework to alter the incentive structure of social media platforms to reduce the spread of misinformation and improve belief accuracy.
Can I be bothered? Neural and computational mechanisms underlying the dynamics of effort processing (BACN Early-career Prize Lecture 2021)
From a workout at the gym to helping a colleague with their work, everyday we make decisions about whether we are willing to exert effort to obtain some sort of benefit. Increases in how effortful actions and cognitive processes are perceived to be has been linked to clinically severe impairments to motivation, such as apathy and fatigue, across many neurological and psychiatric conditions. However, the vast majority of neuroscience research has focused on understanding the benefits for acting, the rewards, and not on the effort required. As a result, the computational and neural mechanisms underlying how effort is processed are poorly understood. How do we compute how effortful we perceive a task to be? How does this feed into our motivation and decisions of whether to act? How are such computations implemented in the brain? and how do they change in different environments? I will present a series of studies examining these questions using novel behavioural tasks, computational modelling, fMRI, pharmacological manipulations, and testing in a range of different populations. These studies highlight how the brain represents the costs of exerting effort, and the dynamic processes underlying how our sensitivity to effort changes as a function of our goals, traits, and socio-cognitive processes. This work provides new computational frameworks for understanding and examining impaired motivation across psychiatric and neurological conditions, as well as why all of us, sometimes, can’t be bothered.
Brain and Mind: Who is the Puppet and who the Puppeteer?
If the mind controls the brain, then there is free will and its corollaries, dignity and responsibility. You are king in your skull-sized kingdom and the architect of your destiny. If, on the other hand, the brain controls the mind, an incendiary conclusion follows: There can be no free will, no praise, no punishment and no purgatory. In this webinar, Professor George Paxinos will discuss his highly respected work on the construction of human and experimental animal brain atlases. He has discovered 94 brain regions, 64 homologies and published 58 books. His first book, The Rat Brain in Stereotaxic Coordinates, is the most cited publication in neuroscience and, for three decades, the third most cited book in science. Professor Paxinos will also present his recently published novel, A River Divided, which was 21 years in the making. Neuroscience principles were used in the formation of charters, such as those related to the mind, soul, free will and consciousness. Environmental issues are at the heart of the novel, including the question of whether the brain is the right ‘size’ for survival. Professor Paxinos studied at Berkeley, McGill and Yale and is now Scientia Professor of Medical Sciences at Neuroscience Research Australia and The University of New South Wales in Sydney.
How evidence synthesis can boost in vivo credibility
As part of the BNA's ongoing Credibility in Neuroscience work, this series of three short webinars will provide neuroscience researchers working in an in vivo setting with tips on how to improve the credibility of their work. Each webinar will be hosted by Emily Sena, member of the BNA's Credibility Advisory Board, with the opportunity for questions.
Embracing variation to boost reproducibility
As part of the BNA's ongoing Credibility in Neuroscience work, this series of three short webinars will provide neuroscience researchers working in an in vivo setting with tips on how to improve the credibility of their work. Each webinar will be hosted by Emily Sena, member of the BNA's Credibility Advisory Board, with the opportunity for questions.
Improving reliability through design and reporting
As part of the BNA's ongoing Credibility in Neuroscience work, this series of three short webinars will provide neuroscience researchers working in an in vivo setting with tips on how to improve the credibility of their work. Each webinar will be hosted by Emily Sena, member of the BNA's Credibility Advisory Board, with the opportunity for questions.
Multimodal framework and fusion of EEG, graph theory and sentiment analysis for the prediction and interpretation of consumer decision
The application of neuroimaging methods to marketing has recently gained lots of attention. In analyzing consumer behaviors, the inclusion of neuroimaging tools and methods is improving our understanding of consumer’s preferences. Human emotions play a significant role in decision making and critical thinking. Emotion classification using EEG data and machine learning techniques has been on the rise in the recent past. We evaluate different feature extraction techniques, feature selection techniques and propose the optimal set of features and electrodes for emotion recognition.Affective neuroscience research can help in detecting emotions when a consumer responds to an advertisement. Successful emotional elicitation is a verification of the effectiveness of an advertisement. EEG provides a cost effective alternative to measure advertisement effectiveness while eliminating several drawbacks of the existing market research tools which depend on self-reporting. We used Graph theoretical principles to differentiate brain connectivity graphs when a consumer likes a logo versus a consumer disliking a logo. The fusion of EEG and sentiment analysis can be a real game changer and this combination has the power and potential to provide innovative tools for market research.
Neural Codes for Natural Behaviors in Flying Bats
This talk will focus on the importance of using natural behaviors in neuroscience research – the “Natural Neuroscience” approach. I will illustrate this point by describing studies of neural codes for spatial behaviors and social behaviors, in flying bats – using wireless neurophysiology methods that we developed – and will highlight new neuronal representations that we discovered in animals navigating through 3D spaces, or in very large-scale environments, or engaged in social interactions. In particular, I will discuss: (1) A multi-scale neural code for very large environments, which we discovered in bats flying in a 200-meter long tunnel. This new type of neural code is fundamentally different from spatial codes reported in small environments – and we show theoretically that it is superior for representing very large spaces. (2) Rapid modulation of position × distance coding in the hippocampus during collision-avoidance behavior between two flying bats. This result provides a dramatic illustration of the extreme dynamism of the neural code. (3) Local-but-not-global order in 3D grid cells – a surprising experimental finding, which can be explained by a simple physics-inspired model, which successfully describes both 3D and 2D grids. These results strongly argue against many of the classical, geometrically-based models of grid cells. (4) I will also briefly describe new results on the social representation of other individuals in the hippocampus, in a highly social multi-animal setting. The lecture will propose that neuroscience experiments – in bats, rodents, monkeys or humans – should be conducted under evermore naturalistic conditions.
NMC4 Short Talk: Predictive coding is a consequence of energy efficiency in recurrent neural networks
Predictive coding represents a promising framework for understanding brain function, postulating that the brain continuously inhibits predictable sensory input, ensuring a preferential processing of surprising elements. A central aspect of this view on cortical computation is its hierarchical connectivity, involving recurrent message passing between excitatory bottom-up signals and inhibitory top-down feedback. Here we use computational modelling to demonstrate that such architectural hard-wiring is not necessary. Rather, predictive coding is shown to emerge as a consequence of energy efficiency, a fundamental requirement of neural processing. When training recurrent neural networks to minimise their energy consumption while operating in predictive environments, the networks self-organise into prediction and error units with appropriate inhibitory and excitatory interconnections and learn to inhibit predictable sensory input. We demonstrate that prediction units can reliably be identified through biases in their median preactivation, pointing towards a fundamental property of prediction units in the predictive coding framework. Moving beyond the view of purely top-down driven predictions, we demonstrate via virtual lesioning experiments that networks perform predictions on two timescales: fast lateral predictions among sensory units and slower prediction cycles that integrate evidence over time. Our results, which replicate across two separate data sets, suggest that predictive coding can be interpreted as a natural consequence of energy efficiency. More generally, they raise the question which other computational principles of brain function can be understood as a result of physical constraints posed by the brain, opening up a new area of bio-inspired, machine learning-powered neuroscience research.
The Open-Source UCLA Miniscope Project
The Miniscope Project -- an open-source collaborative effort—was created to accelerate innovation of miniature microscope technology and to increase global access to this technology. Currently, we are working on advancements ranging from optogenetic stimulation and wire-free operation to simultaneous optical and electrophysiological recording. Using these systems, we have uncovered mechanisms underlying temporal memory linking and investigated causes of cognitive deficits in temporal lobe epilepsy. Through innovation and optimization, this work aims to extend the reach of neuroscience research and create new avenues of scientific inquiry.
How inclusive and diverse is non-invasive brain stimulation in the treatment of psychiatric disorders?
How inclusive and diverse is non-invasive brain stimulation in the treatment of psychiatric disorders?Indira Tendolkar, Donders Institute for Brain, Cognition and Behavior, Department of Psychiatry. Mental illness is associated with a huge socioeconomic burden worldwide, with annual costs only in the Netherlands of €22 billion. Over two decades of cognitive and affective neuroscience research with modern tools of neuroimaging and neurophysiology in humans have given us a wealth of information about neural circuits underlying the main symptom domains of psychiatric disorders and their remediation. Neuromodulation entails the alteration of these neural circuits through invasive (e.g., DBS) or non-invasive (e.g., TMS) techniques with the aim of improving symptoms and/or functions and enhancing neuroplasticity. In my talk, I will focus on neuromodulation studies using repetitive transcranial magnetic stimulation (rTMS) as a relatively safe, noninvasive method, which can be performed simultaneously with neurocognitive interventions. Using the examples of two chronifying mental illnesses, namely obsessive compulsive disorders and major depressive disorder (MDD), I will review the concept of "state dependent" effects of rTMS and highlight how simultaneous or sequential cognitive interventions could help optimize rTMS therapy by providing further control of ongoing neural activity in targeted neural networks. Hardly any attention has been paid to diversity aspects in the studies. By including studies from low- and middle income countries, I will discuss the potential of non-invasive brain stimulation from a transcultural perspective.
Communicating (Neuro)Science
In recent years, communicating one’s research to audiences outside of academia has grown in importance and time commitment for many researchers. Science Slams or University Open Days reliably draw large crowds, and the potential of social media to amplify any message has made it possible to reach interested recipients without the traditional press as a middleman. In this presentation, I will provide insights into science communication from my perspective as a neuroscience researcher, who enjoys spreading the word about how amazing insect brains are. We will have a look at the What?, Why? and How? of science communication. What do we generally mean by the term, and what forms can it take? Why should – or must – we engage in it? And how can we best achieve our aims with it? I will provide an overview of the current communication landscape, some food for (critical) thought, and many practical tips that help me when preparing to share my science with a wider audience.
Meta-analytic evidence of differential prefrontal and early sensory cortex activity during non-social sensory perception in autism
To date, neuroimaging research has had a limited focus on non-social features of autism. As a result, neurobiological explanations for atypical sensory perception in autism are lacking. To address this, we quantitively condensed findings from the non-social autism fMRI literature in line with the current best practices for neuroimaging meta-analyses. Using activation likelihood estimation (ALE), we conducted a series of robust meta-analyses across 83 experiments from 52 fMRI studies investigating differences between autistic (n = 891) and typical (n = 967) participants. We found that typical controls, compared to autistic people, show greater activity in the prefrontal cortex (BA9, BA10) during perception tasks. More refined analyses revealed that, when compared to typical controls, autistic people show greater recruitment of the extrastriate V2 cortex (BA18) during visual processing. Taken together, these findings contribute to our understanding of current theories of autistic perception, and highlight some of the challenges of cognitive neuroscience research in autism.
The neuroecological context of group living
Dr. Sean O'Donnell is a Professor of Biodiversity Earth & Environmental Science at Drexel University, USA. His neuroscience research focuses on how brain structure plasticity & evolution are affected by social behavior, mainly using insects as models. He is also interested in tropical ecology & thermal physiology. He conducts field research & teaches field courses in Central & South America, as well as in the Negev Desert in Israel.
The Impact of Racism-related Stress on Neurobiological Systems in Black Americans”
Black Americans experience diverse racism-related stressors throughout the lifespan. Disproportionately high trauma exposure, economic disadvantage, explicit racism and inequitable treatment are stressors faced by many Black Americans. These experiences have a cumulative negative impact on psychological and physical health. However, little is understood about how experiences of racism, such as discrimination, can mediate health outcomes via their effects on neurobiology. I will present clinical, behavioral, physiological and neurobiological data from Black American participants in the Grady Trauma Project, a longstanding study of trauma conducted in inner-city Atlanta. These data will be discussed in the context of both risk and resilience/adaptation perspectives. Finally, recommendations for future clinical neuroscience research and targets for intervention in marginalized populations will be discussed.
A discussion on the necessity for Open Source Hardware in neuroscience research
Research tools are paramount for scientific development, they enable researchers to observe and manipulate natural phenomena, learn their principles, make predictions and develop new technologies, treatments and improve living standards. Due to their costs and the geographical distribution of manufacturing companies access to them is not widely available, hindering the pace of research, the ability of many communities to contribute to science and education and reap its benefits. One possible solution for this issue is to create research tools under the open source ethos, where all documentation about them (including their designs, building and operating instructions) are made freely available. Dubbed Open Science Hardware (OSH), this production method follows the established and successful principles of open source software and brings many advantages over traditional creation methods such as: economic savings (see Pearce 2020 for potential economic savings in developing open source research tools), distributed manufacturing, repairability, and higher customizability. This development method has been greatly facilitated by recent technological developments in fast prototyping tools, Internet infrastructure, documentation platforms and lower costs of electronic off-the-shelf components. Taken together these benefits have the potential to make research more inclusive, equitable, distributed and most importantly, more reliable and reproducible, as - 1) researchers can know their tools inner workings in minute detail - 2) they can calibrate their tools before every experiment and having them running in optimal condition everytime - 3) given their lower price point, a)students can be trained/taught with hands on classes, b) several copies of the same instrument can be built leading to a parallelization of data collection and the creation of more robust datasets. - 4) Labs across the world can share the exact same type of instruments and create collaborative projects with standardized data collection and sharing.
Thalamic contribution to olfactory processing
The Power and Limits of Neuroscience Research Paradigms on Action and Free Will
African Neuroscience: Current Status and Prospects
Understanding the function and dysfunction of the brain remains one of the key challenges of our time. However, an overwhelming majority of brain research is carried out in the Global North, by a minority of well-funded and intimately interconnected labs. In contrast, with an estimated one neuroscientist per million people in Africa, news about neuroscience research from the Global South remains sparse. Clearly, devising new policies to boost Africa’s neuroscience landscape is imperative. However, the policy must be based on accurate data, which is largely lacking. Such data must reflect the extreme heterogeneity of research outputs across the continent’s 54 countries. We have analysed all of Africa’s Neuroscience output over the past 21 years and uniquely verified the work performed in African laboratories. Our unique dataset allows us to gain accurate and in-depth information on the current state of African Neuroscience research, and to put it into a global context. The key findings from this work and recommendations on how African research might best be supported in the future will be discussed.
Understanding the visual demands of underwater habitats for aquatic animals used in neuroscience research
Zebrafish and cichlids are popular models in visual neuroscience, due to their amenability to advanced research tools and their diverse set of visually guided behaviours. It is often asserted that animals’ neural systems are adapted to the statistical regularities in their natural environments, but relatively little is known about the visual spatiotemporal features in the underwater habitats that nurtured these fish. To address this gap, we have embarked on an examination of underwater habitats in northeastern India and Lake Tanganyika (Zambia), where zebrafish and cichlids are native. In this talk, we will describe the methods used to conduct a series of field measurements and generate a large and diverse dataset of these underwater habitats. We will present preliminary results suggesting that the demands for visually-guided navigation differ between these underwater habitats and the terrestrial habitats characteristic of other model species.
Integrating project management principles for efficient neuroscience research
FENS Forum 2024