← Back

Neurotransmitters

Topic spotlight
TopicWorld Wide

neurotransmitters

Discover seminars, jobs, and research tagged with neurotransmitters across World Wide.
11 curated items10 Seminars1 ePoster
Updated over 2 years ago
11 items · neurotransmitters
11 results
SeminarNeuroscienceRecording

More than a beast growing in a passive brain: excitation and inhibition drive epilepsy and glioma progression

Gilles Huberfeld
Hôpital Fondation Adolphe de Rothschild
Apr 11, 2023

Gliomas are brain tumors formed by networks of connected tumor cells, nested in and interacting with neuronal networks. Neuronal activities interfere with tumor growth and occurrence of seizures affects glioma prognosis, while the developing tumor triggers seizures in the infiltrated cortex. Oncometabolites produced by tumor cells and neurotransmitters affect both the generation of epileptic activities by neurons and the growth of glioma cells through synaptic-related mechanisms, involving both GABAergic / Chloride pathways and glutamatergic signaling. From a clinical sight, epilepsy occurrence is beneficial to glioma prognosis but growing tumors are epileptogenic, which constitutes a paradox. This lecture will review how inhibitory and excitatory signaling drives glioma growth and how epileptic and oncological processes are interfering, with a special focus on the human brain.

SeminarNeuroscience

Ebselen: a lithium-mimetic without lithium side-effects?

Beata R. Godlewska
Clinical Psychopharmacology Research Group, Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK.
Jun 30, 2022

Development of new medications for mental health conditions is a pressing need given the high proportion of people not responding to available treatments. We hope that presenting ebselen to a wider audience will inspire further studies on this promising agent with a benign side-effects profile. Laboratory research, animal research and human studies suggest that ebselen shares many features with the mood stabilising drug lithium, creating a promise of a drug that would have a similar clinical effect but without lithium’s troublesome side-effect profile and toxicity. Both drugs have a common biological target, inositol monophosphatase, whose inhibition is thought key to lithium’s therapeutic effect. Both drugs have neuroprotective action and reduce oxidative stress. In animal studies, ebselen affected neurotransmitters involved in the development of mental health symptoms, and in particular, produced effects of serotonin function very similar to lithium. Both ebselen and lithium share behavioural effects: antidepressant-like effects in rodent models of depression and decrease in behavioural impulsivity, a property associated with lithium's anti-suicidal action. Human neuropsychological studies support an antidepressant profile for ebselen based on its positive impact on emotional processing and reward seeking. Our group currently is exploring ebselen’s effects in patients with mood disorders. A completed ‘add-on’ clinical trial in mania showed ebselen’s superiority over placebo after three weeks of treatment. Our ongoing experimental research explores ebselen’s antidepressant profile in patients with treatment resistant depression. If successful, this will lead to a clinical trial of ebselen as an antidepressant augmentation agent, similar to lithium.

SeminarNeuroscience

How sleep contributes to visual perceptual learning

Masako Tamaki
RIKEN CBS
Mar 10, 2022

Sleep is crucial for the continuity and development of life. Sleep-related problems can alter brain function, and cause potentially severe psychological and behavioral consequences. However, the role of sleep in our mind and behavior is far from clear. In this talk, I will present our research on how sleep may play a role in visual perceptual learning (VPL) by using simultaneous magnetic resonance spectroscopy and polysomnography in human subjects. We measured the concentrations of neurotransmitters in the early visual areas during sleep and obtained the excitation/inhibition (E/I) ratio which represents the amount of plasticity in the visual system. We found that the E/I ratio significantly increased during NREM sleep while it decreased during REM sleep. The E/I ratio during NREM sleep was correlated with offline performance gains by sleep, while the E/I ratio during REM sleep was correlated with the amount of learning stabilization. These suggest that NREM sleep increases plasticity, while REM sleep decreases it to solidify once enhanced learning. NREM and REM sleep may play complementary roles, reflected by significantly different neurochemical processing, in VPL.

SeminarNeuroscience

Role of the gut microbiota in the development of alcohol use disorder

Philippe de Timary
UCLouvain, Belgium, Institute of Neuroscience and Department of Adult Psychiatry
Nov 18, 2021

The gut microbiota is composed of a very large number of bacteria, viruses, fungi and yeasts that play an important role in the body, through the production of a series of metabolites (including neurotransmitters), and through an essential role in the barrier function of the gut and the regulation of immunity and stress response. In this lecture I will present, based mainly on human studies but also on preclinical studies, the evidence for a role of the gut microbiota in the development of alcohol use disorder. I will show the first results of trials to test the effects of nutritional approaches to address these deficits.

SeminarNeuroscience

The retrotrapezoid nucleus: an integrative and interoceptive hub in neural control of breathing

Douglas A. Bayliss
University of Virginia
Apr 11, 2021

In this presentation, we will discuss the cellular and molecular properties of the retrotrapezoid nucleus (RTN), an integrative and interoceptive control node for the respiratory motor system. We will present the molecular profiling that has allowed definitive identification of a cluster of tonically active neurons that provide a requisite drive to the respiratory central pattern generator (CPG) and other pre-motor neurons. We will discuss the ionic basis for steady pacemaker-like firing, including by a large subthreshold oscillation; and for neuromodulatory influences on RTN activity, including by arousal state-dependent neurotransmitters and CO2/H+. The CO2/H+-dependent modulation of RTN excitability represents the sensory component of a homeostatic system by which the brain regulates breathing to maintain blood gases and tissue pH; it relies on two intrinsic molecular proton detectors, both a proton-activated G protein-coupled receptor (GPR4) and a proton-inhibited background K+ channel (TASK-2). We will also discuss downstream neurotransmitter signaling to the respiratory CPG, focusing especially on a newly-identified peptidergic modulation of the preBötzinger complex that becomes activated following birth and the initiation of air breathing. Finally, we will suggest how the cellular and molecular properties of RTN neurons identified in rodent models may contribute to understanding human respiratory disorders, such as congenital central hypoventilation syndrome (CCHS) and sudden infant death syndrome (SIDS).

SeminarNeuroscienceRecording

Playing fast and loose with glutamate builds healthy circuits in the developing cortex

Chris Dulla
Tufts University
Feb 16, 2021

The construction of cortical circuits requires the precise formation of connections between excitatory and inhibitory neurons during early development. Multiple factors, including neurotransmitters, neuronal activity, and neuronal-glial interactions, shape how these critical circuits form. Disruptions of these early processes can disrupt circuit formation, leading to epilepsy and other neurodevelopmental disorders. Here, I will describe our work into understanding how prolonged post-natal astrocyte development in the cortex creates a permissive window for glutamate signaling that provides tonic activation of developing interneurons through Grin2D NMDA receptors. Experimental disruption of this pathway results in hyperexcitable cortical circuits and human mutations in the Grin2D gene, as well as other related molecules that regulate early life glutamate signaling, are associated with devastating epileptic encephalopathies. We will explore fundamental mechanisms linking early life glutamate signaling and later circuit hyperexcitability, with an emphasis on potential therapeutic interventions aimed at reducing epilepsy and other neurological dysfunction.

SeminarPhysics of Life

“Biophysics of Structural Plasticity in Postsynaptic Spines”

Padmini Rangamani
University of California, San Diego
Oct 26, 2020

The ability of the brain to encode and store information depends on the plastic nature of the individual synapses. The increase and decrease in synaptic strength, mediated through the structural plasticity of the spine, are important for learning, memory, and cognitive function. Dendritic spines are small structures that contain the synapse. They come in a variety of shapes (stubby, thin, or mushroom-shaped) and a wide range of sizes that protrude from the dendrite. These spines are the regions where the postsynaptic biochemical machinery responds to the neurotransmitters. Spines are dynamic structures, changing in size, shape, and number during development and aging. While spines and synapses have inspired neuromorphic engineering, the biophysical events underlying synaptic and structural plasticity of single spines remain poorly understood. Our current focus is on understanding the biophysical events underlying structural plasticity. I will discuss recent efforts from my group — first, a systems biology approach to construct a mathematical model of biochemical signaling and actin-mediated transient spine expansion in response to calcium influx caused by NMDA receptor activation and a series of spatial models to study the role of spine geometry and organelle location within the spine for calcium and cyclic AMP signaling. Second, I will discuss how mechanics of membrane-cytoskeleton interactions can give insight into spine shape region. And I will conclude with some new efforts in using reconstructions from electron microscopy to inform computational domains. I will conclude with how geometry and mechanics plays an important role in our understanding of fundamental biological phenomena and some general ideas on bio-inspired engineering.

ePoster

Do neurotransmitters regulate astrocyte-derived extracellular vesicle secretion and miRNA content?

Rebecca Hekking, Yadaly Gassama, Lucie Franco, Vanessa Rouglan, Thierry Leste-Lasserre, Liam Barry-Carroll, Jean-Christophe Delpech, Claire Leger, Philippe Ciofi, Elena Avignone, Alexandre Favereaux, Aude Panatier

FENS Forum 2024