← Back

Neurovascular

Topic spotlight
TopicWorld Wide

neurovascular

Discover seminars, jobs, and research tagged with neurovascular across World Wide.
17 curated items9 Seminars8 ePosters
Updated almost 2 years ago
17 items · neurovascular
17 results
SeminarNeuroscienceRecording

Blood-brain barrier dysfunction in epilepsy: Time for translation

Alon Friedman
Dalhousie University
Feb 27, 2024

The neurovascular unit (NVU) consists of cerebral blood vessels, neurons, astrocytes, microglia, and pericytes. It plays a vital role in regulating blood flow and ensuring the proper functioning of neural circuits. Among other, this is made possible by the blood-brain barrier (BBB), which acts as both a physical and functional barrier. Previous studies have shown that dysfunction of the BBB is common in most neurological disorders and is associated with neural dysfunction. Our studies have demonstrated that BBB dysfunction results in the transformation of astrocytes through transforming growth factor beta (TGFβ) signaling. This leads to activation of the innate neuroinflammatory system, changes in the extracellular matrix, and pathological plasticity. These changes ultimately result in dysfunction of the cortical circuit, lower seizure threshold, and spontaneous seizures. Blocking TGFβ signaling and its associated pro-inflammatory pathway can prevent this cascade of events, reduces neuroinflammation, repairs BBB dysfunction, and prevents post-injury epilepsy, as shown in experimental rodents. To further understand and assess BBB integrity in human epilepsy, we developed a novel imaging technique that quantitatively measures BBB permeability. Our findings have confirmed that BBB dysfunction is common in patients with drug-resistant epilepsy and can assist in identifying the ictal-onset zone prior to surgery. Current clinical studies are ongoing to explore the potential of targeting BBB dysfunction as a novel treatment approach and investigate its role in drug resistance, the spread of seizures, and comorbidities associated with epilepsy.

SeminarNeuroscience

Neurovascular Interactions: Mechanisms, Imaging, Therapeutics

Akasoglou Katerina
Gladstone Institutes, UCSF, USA
Feb 6, 2024
SeminarNeuroscience

Astrocyte reprogramming / activation and brain homeostasis

Thomaidou Dimitra
Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
Dec 12, 2023

Astrocytes are multifunctional glial cells, implicated in neurogenesis and synaptogenesis, supporting and fine-tuning neuronal activity and maintaining brain homeostasis by controlling blood-brain barrier permeability. During the last years a number of studies have shown that astrocytes can also be converted into neurons if they force-express neurogenic transcription factors or miRNAs. Direct astrocytic reprogramming to induced-neurons (iNs) is a powerful approach for manipulating cell fate, as it takes advantage of the intrinsic neural stem cell (NSC) potential of brain resident reactive astrocytes. To this end, astrocytic cell fate conversion to iNs has been well-established in vitro and in vivo using combinations of transcription factors (TFs) or chemical cocktails. Challenging the expression of lineage-specific TFs is accompanied by changes in the expression of miRNAs, that post-transcriptionally modulate high numbers of neurogenesis-promoting factors and have therefore been introduced, supplementary or alternatively to TFs, to instruct direct neuronal reprogramming. The neurogenic miRNA miR-124 has been employed in direct reprogramming protocols supplementary to neurogenic TFs and other miRNAs to enhance direct neurogenic conversion by suppressing multiple non-neuronal targets. In our group we aimed to investigate whether miR-124 is sufficient to drive direct reprogramming of astrocytes to induced-neurons (iNs) on its own both in vitro and in vivo and elucidate its independent mechanism of reprogramming action. Our in vitro data indicate that miR-124 is a potent driver of the reprogramming switch of astrocytes towards an immature neuronal fate. Elucidation of the molecular pathways being triggered by miR-124 by RNA-seq analysis revealed that miR-124 is sufficient to instruct reprogramming of cortical astrocytes to immature induced-neurons (iNs) in vitro by down-regulating genes with important regulatory roles in astrocytic function. Among these, the RNA binding protein Zfp36l1, implicated in ARE-mediated mRNA decay, was found to be a direct target of miR-124, that be its turn targets neuronal-specific proteins participating in cortical development, which get de-repressed in miR-124-iNs. Furthermore, miR-124 is potent to guide direct neuronal reprogramming of reactive astrocytes to iNs of cortical identity following cortical trauma, a novel finding confirming its robust reprogramming action within the cortical microenvironment under neuroinflammatory conditions. In parallel to their reprogramming properties, astrocytes also participate in the maintenance of blood-brain barrier integrity, which ensures the physiological functioning of the central nervous system and gets affected contributing to the pathology of several neurodegenerative diseases. To study in real time the dynamic physical interactions of astrocytes with brain vasculature under homeostatic and pathological conditions, we performed 2-photon brain intravital imaging in a mouse model of systemic neuroinflammation, known to trigger astrogliosis and microgliosis and to evoke changes in astrocytic contact with brain vasculature. Our in vivo findings indicate that following neuroinflammation the endfeet of activated perivascular astrocytes lose their close proximity and physiological cross-talk with vasculature, however this event is at compensated by the cross-talk of astrocytes with activated microglia, safeguarding blood vessel coverage and maintenance of blood-brain integrity.

SeminarNeuroscienceRecording

Neurovascular signaling pathways in the mammalian retina

Will Grimes
NINDS/NIH
Dec 5, 2021

As a developmental outpocket of the brain, the retina exhibits features commonly found in most brain areas, including neurovascular interactions. In this presentation I will discuss various pathways that contribute to neurovascular interactions in the mammalian retina and present newly uncovered elements that likely participate in these pathways. Information obtained from retina could improve our understanding of neurovascular coupling pathways throughout the brain.

SeminarNeuroscience

Untitled Seminar

Isabelle Brunet (France), Debby Silver (USA), Robin Vigouroux (France), Patricia Garcez (Brazil)
Sep 29, 2021

Isabelle Brunet (France) – Neurovascular development Debby Silver (USA) - Dynamic post-transcriptional control of cortical development Robin Vigouroux (France) – Evolution of binocular vision Patricia Garcez (Brazil) – Beyond microcephaly: how Zika virus impacts brain development

SeminarNeuroscience

Magnetic Resonance Measures of Brain Blood Vessels, Metabolic Activity, and Pathology in Multiple Sclerosis

William Rooney
Oregon Health & Science University
Apr 5, 2021

The normally functioning blood-brain barrier (BBB) regulates the transfer of material between blood and brain. BBB dysfunction has long been recognized in multiple sclerosis (MS), and there is considerable interest in quantifying functional aspects of brain blood vessels and their role in disease progression. Parenchymal water content and its association with volume regulation is important for proper brain function, and is one of the key roles of the BBB. There is convincing evidence that the astrocyte is critical in establishing and maintaining a functional BBB and providing metabolic support to neurons. Increasing evidence suggests that functional interactions between endothelia, pericytes, astrocytes, and neurons, collectively known as the neurovascular unit, contribute to brain water regulation, capillary blood volume and flow, BBB permeability, and are responsive to metabolic demands. Increasing evidence suggests altered metabolism in MS brain which may contribute to reduced neuro-repair and increased neurodegeneration. Metabolically relevant biomarkers may provide sensitive readouts of brain tissue at risk of degeneration, and magnetic resonance offers substantial promise in this regard. Dynamic contrast enhanced MRI combined with appropriate pharmacokinetic modeling allows quantification of distinct features of BBB including permeabilities to contrast agent and water, with rate constants that differ by six orders of magnitude. Mapping of these rate constants provides unique biological aspects of brain vasculature relevant to MS.

SeminarNeuroscience

Neuroimmune interactions in Cardiovascular Diseases

Daniela Carnevale
“Sapienza” University of Rome
Mar 28, 2021

The nervous system and the immune system share the common ability to exert gatekeeper roles at the interfaces between internal and external environment. Although interaction between these two evolutionarily highly conserved systems is long recognized, the pathophysiological mechanisms regulating their reciprocal crosstalk in cardiovascular diseases became object of investigation only more recently. In the last years, our group elucidated how the autonomic nervous system controls the splenic immunity recruited by hypertensive challenges. In my talk, I will focus on the molecular mechanisms that regulate the neuro-immune crosstalk in hypertension. I will elaborate on the mechanistic insights into this brain-spleen axis led us uncover a new molecular pathway mediating the neuroimmune interaction established by noradrenergic-mediated release in the spleen of placental growth factor (PlGF), an angiogenic growth factor potentially targetable with pharmacological approaches.

SeminarNeuroscience

Untitled Seminar

Katerina Akassoglou
Gladstone Institute of Neurological Disease, Univesity of California San Francisco
Jan 24, 2021
SeminarNeuroscienceRecording

When spontaneous waves meet angiogenesis: a case study from the neonatal retina

Evelyne Sernagor
Newcastle University
Oct 11, 2020

By continuously producing electrical signals, neurones are amongst the most energy-demanding cells in the organism. Resting ionic levels are restored via metabolic pumps that receive the necessary energy from oxygen supplied by blood vessels. Intense spontaneous neural activity is omnipresent in the developing CNS. It occurs during short, well-defined periods that coincide precisely with the timing of angiogenesis. Such coincidence cannot be random; there must be a universal mechanism triggering spontaneous activity concurrently with blood vessels invading neural territories for the first time. However, surprisingly little is known about the role of neural activity per se in guiding angiogenesis. Part of the reason is that it is challenging to study developing neurovascular networks in tri-dimensional space in the brain. We investigate these questions in the neonatal mouse retina, where blood vessels are much easier to visualise because they initially grow in a plane, while waves of spontaneous neural activity (spreading via cholinergic starburst amacrine cells) sweep across the retinal ganglion cell layer, in close juxtaposition with the growing vasculature. Blood vessels reach the periphery by postnatal day (P) 7-8, shortly before the cholinergic waves disappear (at P10). We discovered transient clusters of auto-fluorescent cells that form an annulus around the optic disc, gradually expanding to the periphery, which they reach at the same time as the growing blood vessels. Remarkably, these cells appear locked to the frontline of the growing vasculature. Moreover, by recording waves with a large-scale multielectrode array that enables us to visualise them at pan-retinal level, we found that their initiation points are not random; they follow a developmental centre-to-periphery pattern similar to the clusters and blood vessels. The density of growing blood vessels is higher in cluster areas than in-between clusters at matching eccentricity. The cluster cells appear to be phagocytosed by microglia. Blocking Pannexin1 (PANX1) hemichannels activity with probenecid completely blocks the spontaneous waves and results in the disappearance of the fluorescent cell clusters. We suggest that these transient cells are specialised, hyperactive neurones that form spontaneous activity hotspots, thereby triggering retinal waves through the release of ATP via PANX1 hemichannels. These activity hotspots attract new blood vessels to enhance local oxygen supply. Signalling through PANX1 attracts microglia that establish contact with these cells, eventually eliminating them once blood vessels have reached their vicinity. The auto-fluorescence that characterises the cell clusters may develop only once the process of microglial phagocytosis is initiated.

ePoster

Computational modeling of neurovascular coupling at the gliovascular unit

Florian Dupeuble, Hugues Berry, Audrey Denizot

COSYNE 2025

ePoster

Attempt to pharmacologically induce neurovascular uncoupling in aged, experienced rats

Bence Tamás Varga, Attila Gáspár, Aliz Judit Ernyey, Barbara Hutka, Tekla Brigitta Tajti, Levente Kollár, Péter Kovács, Zoltán Sándor Zádori, István Gyertyán

FENS Forum 2024

ePoster

Dissociated neurovascular response to microelectrode stimulation in mouse visual cortex under two-photon microscopy and epifluorescence imaging

Alexandra Yonza, Kayeon Kim, Changsi Cai, Anpan Han, Xiyuan Liu, Shelley Fried

FENS Forum 2024

ePoster

Investigating the role of pyramidal cells in the neurovascular uncoupling of Alzheimer's disease

Esther Belzic, Benjamin Le Gac, Bernadette Hannesse, Marie-Pierre Morel, Sandrine Picaud, Dongdong Li, Bruno Cauli

FENS Forum 2024

ePoster

The Janus faces of nanoparticles at the neurovascular unit: A double-edged sword in neurodegeneration

Giulia Terribile, Sara Di Girolamo, Paolo Spaiardi, Gerardo Biella, Silvia Sesana, Francesca Re, Giulio Alfredo Sancini

FENS Forum 2024

ePoster

Mitochondrial dysfunction underlies impaired neurovascular coupling following traumatic brain injury

Gerben Van Hameren, Jamil Muradov, Anna Minarik, Refat Aboghazleh, Sophie Orr, Mark Maclean, Alon Friedman

FENS Forum 2024

ePoster

Neurovascular coupling along the optic nerve: Insights from two-photon imaging, functional ultrasound, and high-resolution BOLD fMRI

Esteban Suárez Baquero, Serge Charpak

FENS Forum 2024

ePoster

Spreading depolarization disrupts neurovascular coupling after experimental acute ischemic stroke

Armand Rafael Bálint, Ferenc Bari, Ákos Menyhárt, Eszter Farkas

FENS Forum 2024