Nitric Oxide
nitric oxide
40 years of headache research
Lifelong devotion to headache research has led to many discoveries. First a series of studies of brain blood flow during attacks of migraine. The results showed changes compatible with cortical spreading depression in migraine without aura effectively negating the then prevailing vasospastic/ischemic theory. In migraine without aura no changes in brain blood flow. This difference was crucial for the separation of migraine with aura and migraine without aura in the first and subsequent editions of the international headache classification headed by me. Then a human migraine provocation model that has elucidated the molecular mechanisms of migraine. Successively we showed in series of papers the importance of nitric oxide, histamine, CGRP, PACAP and prostanoids. Therapeutic effectiveness of antagonizing these provokers by tonabersat, L-NMMA, CGRP receptor antagonists and monoclonal antibodies and of NSAIDs. Present and future attempts to put all these signaling mechanisms into a framework but it is not easy
Carnosine negatively modulates pro-oxidant activities of M1 peripheral macrophages and prevents neuroinflammation induced by amyloid-β in microglial cells
Carnosine is a natural dipeptide widely distributed in mammalian tissues and exists at particularly high concentrations in skeletal and cardiac muscles and brain. A growing body of evidence shows that carnosine is involved in many cellular defense mechanisms against oxidative stress, including inhibition of amyloid-β (Aβ) aggregation, modulation of nitric oxide (NO) metabolism, and scavenging both reactive nitrogen and oxygen species. Different types of cells are involved in the innate immune response, with macrophage cells representing those primarily activated, especially under different diseases characterized by oxidative stress and systemic inflammation such as depression and cardiovascular disorders. Microglia, the tissue-resident macrophages of the brain, are emerging as a central player in regulating key pathways in central nervous system inflammation; with specific regard to Alzheimer’s disease (AD) these cells exert a dual role: on one hand promoting the clearance of Aβ via phagocytosis, on the other hand increasing neuroinflammation through the secretion of inflammatory mediators and free radicals. The activity of carnosine was tested in an in vitro model of macrophage activation (M1) (RAW 264.7 cells stimulated with LPS + IFN-γ) and in a well-validated model of Aβ-induced neuroinflammation (BV-2 microglia treated with Aβ oligomers). An ample set of techniques/assays including MTT assay, trypan blue exclusion test, high performance liquid chromatography, high-throughput real-time PCR, western blot, atomic force microscopy, microchip electrophoresis coupled to laser-induced fluorescence, and ELISA aimed to evaluate the antioxidant and anti-inflammatory activities of carnosine was employed. In our experimental model of macrophage activation (M1), therapeutic concentrations of carnosine exerted the following effects: 1) an increased degradation rate of NO into its non-toxic end-products nitrite and nitrate; 2) the amelioration of the macrophage energy state, by restoring nucleoside triphosphates and counterbalancing the changes in ATP/ADP, NAD+/NADH and NADP+/NADPH ratio obtained by LPS + IFN-γ induction; 3) a reduced expression of pro-oxidant enzymes (NADPH oxidase, Cyclooxygenase-2) and of the lipid peroxidation product malondialdehyde; 4) the rescue of antioxidant enzymes expression (Glutathione peroxidase 1, Superoxide dismutase 2, Catalase); 5) an increased synthesis of transforming growth factor-β1 (TGF-β1) combined with the negative modulation of interleukines 1β and 6 (IL-1β and IL-6), and 6) the induction of nuclear factor erythroid-derived 2-like 2 (Nrf2) and heme oxygenase-1 (HO-1). In our experimental model of Aβ-induced neuroinflammation, carnosine: 1) prevented cell death in BV-2 cells challenged with Aβ oligomers; 2) lowered oxidative stress by decreasing the expression of inducible nitric oxide synthase and NADPH oxidase, and the concentrations of nitric oxide and superoxide anion; 3) decreased the secretion of pro-inflammatory cytokines such as IL-1β simultaneously rescuing IL-10 levels and increasing the expression and the release of TGF-β1; 4) prevented Aβ-induced neurodegeneration in primary mixed neuronal cultures challenged with Aβ oligomers and these neuroprotective effects was completely abolished by SB431542, a selective inhibitor of type-1 TGF-β receptor. Overall, our data suggest a novel multimodal mechanism of action of carnosine underlying its protective effects in macrophages and microglia and the therapeutic potential of this dipeptide in counteracting pro-oxidant and pro-inflammatory phenomena observed in different disorders characterized by elevated levels of oxidative stress and inflammation such as depression, cardiovascular disorders, and Alzheimer’s disease.
Acute and chronic treatment with the nitric oxide synthase inhibitor agmatine stimulates serotonergic neurons in the rat dorsal raphe nucleus
FENS Forum 2024
Delving into synaptic activity in autism: Nitric oxide pathway and glutamate/GABA ratio
FENS Forum 2024
Study of the role of nitric oxide in glioblastoma cellular populations
FENS Forum 2024
Unveiling the missing link between cell membrane signaling and mitochondria NCLX regulation: Crucial role of nitric oxide
FENS Forum 2024