Numerosity
numerosity
A sense without sensors: how non-temporal stimulus features influence the perception and the neural representation of time
Any sensory experience of the world, from the touch of a caress to the smile on our friend’s face, is embedded in time and it is often associated with the perception of the flow of it. The perception of time is therefore a peculiar sensory experience built without dedicated sensors. How the perception of time and the content of a sensory experience interact to give rise to this unique percept is unclear. A few empirical evidences show the existence of this interaction, for example the speed of a moving object or the number of items displayed on a computer screen can bias the perceived duration of those objects. However, to what extent the coding of time is embedded within the coding of the stimulus itself, is sustained by the activity of the same or distinct neural populations and subserved by similar or distinct neural mechanisms is far from clear. Addressing these puzzles represents a way to gain insight on the mechanism(s) through which the brain represents the passage of time. In my talk I will present behavioral and neuroimaging studies to show how concurrent changes of visual stimulus duration, speed, visual contrast and numerosity, shape and modulate brain’s and pupil’s responses and, in case of numerosity and time, influence the topographic organization of these features along the cortical visual hierarchy.
A vision of numerical cognition
The multimodal number sense: spanning space, time, sensory modality, and action
Humans and other animals can estimate rapidly the number of items in a scene, flashes or tones in a sequence and motor actions. Adaptation techniques provide clear evidence in humans for the existence of specialized numerosity mechanisms that make up the numbersense. This sense of number is truly general, encoding the numerosity of both spatial arrays and sequential sets, in vision and audition, and interacting strongly with action. The adaptation (cross-sensory and cross-format) acts on sensory mechanisms rather than decisional processes, pointing to a truly general sense.
Timing errors and decision making
Error monitoring refers to the ability to monitor one's own task performance without explicit feedback. This ability is studied typically in two-alternative forced-choice (2AFC) paradigms. Recent research showed that humans can also keep track of the magnitude and direction of errors in different magnitude domains (e.g., numerosity, duration, length). Based on the evidence that suggests a shared mechanism for magnitude representations, we aimed to investigate whether metric error monitoring ability is commonly governed across different magnitude domains. Participants reproduced/estimated temporal, numerical, and spatial magnitudes after which they rated their confidence regarding first order task performance and judged the direction of their reproduction/estimation errors. Participants were also tested in a 2AFC perceptual decision task and provided confidence ratings regarding their decisions. Results showed that variability in reproductions/estimations and metric error monitoring ability, as measured by combining confidence and error direction judgements, were positively related across temporal, spatial, and numerical domains. Metacognitive sensitivity in these metric domains was also positively associated with each other but not with metacognitive sensitivity in the 2AFC perceptual decision task. In conclusion, the current findings point at a general metric error monitoring ability that is shared across different metric domains with limited generalizability to perceptual decision-making.