Olfactory Learning
olfactory learning
Extracting heading and goal through structured action
Many flexible behaviors are thought to rely on internal representations of an animal’s spatial relationship to its environment and of the consequences of its actions in that environment. While such representations—e.g. of head direction and value—have been extensively studied, how they are combined to guide behavior is not well understood. I will discuss how we are exploring these questions using a classical visual learning paradigm for the fly. I’ll begin by describing a simple policy that, when tethered to an internal representation of heading, captures structured behavioral variability in this task. I’ll describe how ambiguities in the fly’s visual surroundings affect its perception and, when coupled to this policy, manifest in predictable changes in behavior. Informed by newly-released connectomic data, I’ll then discuss how these computations might be carried out and combined within specific circuits in the fly’s central brain, and how perception and action might interact to shape individual differences in learning performance.
Experience dependent changes of sensory representation in the olfactory cortex
Sensory representations are typically thought as neuronal activity patterns that encode physical attributes of the outside world. However, increasing evidence is showing that as animals learned the association between a sensory stimulus and its behavioral relevance, stimulus representation in sensory cortical areas can change. In this seminar I will present recent experiments from our lab showing that the activity in the olfactory piriform cortex (PC) of mice encodes not only odor information, but also non-olfactory variables associated with the behavioral task. By developing an associative olfactory learning task, in which animals learn to associate a particular context with an odor and a reward, we were able to record the activity of multiple neurons as the animal runs in a virtual reality corridor. By analyzing the population activity dynamics using Principal Components Analysis, we find different population trajectories evolving through time that can discriminate aspects of different trial types. By using Generalized Linear Models we further dissected the contribution of different sensory and non-sensory variables to the modulation of PC activity. Interestingly, the experiments show that variables related to both sensory and non-sensory aspects of the task (e.g., odor, context, reward, licking, sniffing rate and running speed) differently modulate PC activity, suggesting that the PC adapt odor processing depending on experience and behavior.
Cholinergic regulation of learning in the olfactory system
In the olfactory system, cholinergic modulation has been associated with contrast modulation and changes in receptive fields in the olfactory bulb, as well the learning of odor associations in the olfactory cortex. Computational modeling and behavioral studies suggest that cholinergic modulation could improve sensory processing and learning while preventing pro-active interference when task demands are high. However, how sensory inputs and/or learning regulate incoming modulation has not yet been elucidated. We here use a computational model of the olfactory bulb, piriform cortex (PC) and horizontal limb of the diagonal band of Broca (HDB) to explore how olfactory learning could regulate cholinergic inputs to the system in a closed feedback loop. In our model, the novelty of an odor is reflected in firing rates and sparseness of cortical neurons in response to that odor and these firing rates can directly regulate learning in the system by modifying cholinergic inputs to the system.
Role of local Kenyon cell – Kenyon Cell interactions in the γ lobe of Drosophila melanogaster for specificity in olfactory learning
Bernstein Conference 2024
State-dependent navigation strategies in C. elegans vary with olfactory learning
COSYNE 2023
Rab3 mediates cyclic AMP-dependent presynaptic plasticity and olfactory learning
FENS Forum 2024