Ontologies
ontologies
Vito Trianni
A fixed-term research position is open for a post-doc, or for a PhD student nearing the end of his doctoral program. The goal of the research is to study hybrid collective intelligence systems for decision support in complex open-ended problems. It involves the design and implementation of a hybrid collective intelligence system to exploit the interaction between human experts and artificial agents based on knowledge graphs and ontologies for knowledge representation, integration and reasoning.
N/A
The position integrates into an attractive environment of existing activities in artificial intelligence such as machine learning for robotics and computer vision, natural language processing, recommender systems, schedulers, virtual and augmented reality, and digital forensics. The candidate should engage in research and teaching in the general area of artificial intelligence. Examples of possible foci include machine learning for pattern recognition, prediction and decision making, data-driven, adaptive, learning and self-optimizing systems, explainable and transparent AI, representation learning; generative models, neuro-symbolic AI, causality, distributed/decentralized learning, environmentally-friendly, sustainable, data-efficient, privacy-preserving AI, neuromorphic computing and hardware aspects, knowledge representations, reasoning, ontologies. Cooperations with research groups at the Department of Computer Science, the Research Areas and in particular the Digital Science Center of the University as well as with business, industry and international research institutions are expected. The candidate should reinforce or complement existing strengths of the Department of Computer Science.
The future of neuropsychology will be open, transdiagnostic, and FAIR - why it matters and how we can get there
Cognitive neuroscience has witnessed great progress since modern neuroimaging embraced an open science framework, with the adoption of shared principles (Wilkinson et al., 2016), standards (Gorgolewski et al., 2016), and ontologies (Poldrack et al., 2011), as well as practices of meta-analysis (Yarkoni et al., 2011; Dockès et al., 2020) and data sharing (Gorgolewski et al., 2015). However, while functional neuroimaging data provide correlational maps between cognitive functions and activated brain regions, its usefulness in determining causal link between specific brain regions and given behaviors or functions is disputed (Weber et al., 2010; Siddiqiet al 2022). On the contrary, neuropsychological data enable causal inference, highlighting critical neural substrates and opening a unique window into the inner workings of the brain (Price, 2018). Unfortunately, the adoption of Open Science practices in clinical settings is hampered by several ethical, technical, economic, and political barriers, and as a result, open platforms enabling access to and sharing clinical (meta)data are scarce (e.g., Larivière et al., 2021). We are working with clinicians, neuroimagers, and software developers to develop an open source platform for the storage, sharing, synthesis and meta-analysis of human clinical data to the service of the clinical and cognitive neuroscience community so that the future of neuropsychology can be transdiagnostic, open, and FAIR. We call it neurocausal (https://neurocausal.github.io).
Why do we need a formal ontology of cognition, and what should it look like?
In my talk I will discuss the concept of a cognitive ontology, which defines the parts of the mind that psychologists and neuroscientsts aim to study. I will discuss the way in which ontologies have traditionally been defined, and then discuss ways in which ontology might be reconsidered in the context of computational approaches to cognition.