Open Hardware
open hardware
Open Hardware Microfluidics
What’s the point of having scientific and technological innovations when only a few can benefit from them? How can we make science more inclusive? Those questions are always in the back of my mind when we perform research in our laboratory, and we have a strong focus on the scientific accessibility of our developed methods from microfabrication to sensor development.
OpenSFDI: an open hardware project for label-free measurements of tissue optical properties with spatial frequency domain imaging
Spatial frequency domain imaging (SFDI) is a diffuse optical measurement technique that can quantify tissue optical absorption and reduced scattering on a pixel by-pixel basis. Measurements of absorption at different wavelengths enable the extraction of molar concentrations of tissue chromophores over a wide field, providing a noncontact and label-free means to assess tissue viability, oxygenation, microarchitecture, and molecular content. In this talk, I will describe openSFDI, an open-source guide for building a low-cost, small-footprint, multi-wavelength SFDI system capable of quantifying absorption and reduced scattering as well as oxyhemoglobin and deoxyhemoglobin concentrations in biological tissue. The openSFDI project has a companion website which provides a complete parts list along with detailed instructions for assembling the openSFDI system. I will also review several technological advances our lab has recently made, including the extension of SFDI to the shortwave infrared wavelength band (900-1300 nm), where water and lipids provide strong contrast. Finally, I will discuss several preclinical and clinical applications for SFDI, including applications related to cancer, dermatology, rheumatology, cardiovascular disease, and others.
Panorama de tecnologías abiertas para ciencia y educación en América Latina
Open science hardware (OSH) as a concept usually refers to artifacts, but also to a practice, a discipline and a collective of people pushing for open access to the design of science tools. Since 2016, the Global Open Science Hardware (GOSH) movement gathers actors from academia, education, the private sector and civic organisations to advocate for OSH to be ubiquitous by 2025. In Latin America, GOSH advocates have fundraised and gathered around the development of annual "residencies" for building hardware for science and education. The community is currently defining its regional strategy and identifying other regional actors working on science and technology democratization. In this presentation I will give an overview of the open hardware movement for science, with a focus on the activities and strategy of the Latin American chapter and concrete ways to engage.