Optic
optic neuropathies
Gene therapy for Optic Neuropathies
Neuronal and Vascular Dysfunction in Optic Neuropathies: New Insights from Live Imaging Studies
Electrical coupling of optic nerve axons - a novel model of gap junctions' involvement in optic nerve function
Axons in the optic nerve are arranged in bundles and conducting action potential with resistance related to their membrane. Optic nerve axons do not form absolutely independent conductive channels. They are directly coupled by gap junctions formed in majority by neuronal Cx45. Coupling of axons, except known transpassing functions, allows to reduce axonal membrane resistance of optic nerve and accelerates transduction of visual signal. This novel finding have substantial implications for understanding of the pathogenesis of various optic neuropathies and identifies a new potential target for a therapeutic approach.
Electrophysiology application for optic nerve and the central nervous system diseases
Electrophysiology of eye and visual pathway is useful tool in ophthalmology and neurology. It covers a few examinations to find out if defect of vision is peripheral or central. Visual evoked potentials (VEP) are most frequently used in neurology and neuroophthalmology. VEP are evoked by flash or pattern stimulations. The combination of these both examinations gives more information about the visual pathway. It is very important to remember that VEP originate in the retina and reflect its function as well. In many cases not only VEP but also electroretinography (ERG) is essential for diagnosis. The seminar presents basic electrophysiological procedures used for diagnosis and follow-up of optic neuropathies and some of central nervous system diseases which affect vision (mostly multiple sclerosis, CNS tumors, stroke, traumas, intracranial hypertension).