← Back

Optical Microscopy

Topic spotlight
TopicWorld Wide

optical microscopy

Discover seminars, jobs, and research tagged with optical microscopy across World Wide.
2 curated items2 Seminars
Updated over 4 years ago
2 items · optical microscopy
2 results
SeminarNeuroscience

Neural control of motor actions: from whole-brain landscape to millisecond dynamics

Takashi Kawashima
Weizmann Institute
Apr 7, 2021

Animals control motor actions at multiple timescales. We use larval zebrafish and advanced optical microscopy to understand the underlying neural mechanisms. First, we examined the mechanisms of short-term motor learning by using whole-brain neural activity imaging. We found that the 5-HT system integrates the sensory outcome of actions and determines future motor patterns. Second, we established a method for recording spiking activity and membrane potential from a population of neurons during behavior. We identified putative motor command signals and internal copy signals that encode millisecond-scale details of the swimming dynamics. These results demonstrate that zebrafish provide a holistic and mechanistic understanding of the neural basis of motor control in vertebrate brains.

SeminarPhysics of LifeRecording

Shaping colloidal bananas to reveal biaxial, splay-bend nematic, and smectic phases

Roel Dullens
University of Oxford
Oct 13, 2020

Colloidal dispersions of rod-like particles are widely accepted as convenient model systems to study the phase behavior of liquid-crystal forming systems, commonly found in LCDs. This is due to the fact that colloidal rods exhibit analogous phase behavior to that of elongated molecules, while they can be directly observed by optical microscopy. Recently, there has been a surge of interest in the liquid crystalline behaviour of so-called bent-core, or banana-shaped, molecules. This is due to their ability to form exotic biaxial nematic phases such as the twist-bend and splay-bend nematic phase, which may be of particular interest inherent to their fast switching response in LCDs. Here, we develop model “banana-shaped” colloidal particles with tunable dimensions and curvature, whose structure and dynamics are accessible at the particle level. 
By heating initially straight rods made of SU-8 photoresist, we induce a controllable shape deformation that causes the rods to buckle into banana-shaped particles. We elucidate the phase behavior of differently curved colloidal bananas using confocal microscopy. Although highly curved bananas only form isotropic phases, less curved bananas exhibit very rich phase behavior, including biaxial nematic phases, polar and antipolar smectic-like phases, and even the long-predicted, elusive splay-bend nematic phase.