Optics
Optics
Prof Ian Oldenburg
The Oldenburg lab combines optics, multiphoton optogenetics, calcium imaging, and computation to understand the motor system. The overall goal of the Oldenburg Lab is to understand the causal relationship between neural activity and motor actions. We use advanced optical techniques such as multiphoton holographic optogenetics to control neural activity with an incredible degree of precision, writing complex patterns of activity to distributed groups of cells. Only by writing activity into the brain at the scale in which it naturally occurs (individual neurons firing distinct patterns of action potentials) can we test theories of what population activity means. We read out the effects of these precise manipulations locally with calcium imaging, in neighboring brain regions with electrophysiology, and at the 'whole animal level' through changes in behavior. We are looking for curious motivated, and talented people with a wide range of skill sets to join our group at all levels from Technician to Postdoc.
Prof. Li Zhaoping
The Department for Sensory and Sensorimotor Systems of the Max-Planck-Institute for Biological Cybernetics studies the processing of sensory information (visual, auditory, tactile, olfactory) in the brain and the use of this information for directing body movements and making cognitive decisions. The research is highly interdisciplinary, and uses theoretical and experimental approaches, including human psychophysics, eye tracking, fMRI, EEG, TMS and animal behavior, imaging, electrophysiology, and computational modelling. For more information, please see the department website: www.lizhaoping.org We are currently looking for a Lab Mechatronics / Programming Assistant (m/f/d) 100% to join us at the next possible opportunity. The position: You will provide hardware, software, and managerial support for a diverse set of brain and neuroscience research activities. This includes: Computer and IT support of Windows and Linux systems Programming and debugging of computer code, especially at the stage of setting up new equipment or new experimental platforms Hardware repairs and troubleshooting Equipment inventory and maintenance Supervising and training of new equipment users Setting up, updating and managing the database of knowledge and data from research projects, personnel and activities Setting up and managing the procedures for data entry and data query for lab members in this database Be part of a department administrative team for planning and implementing departmental policies and projects. Our department is interdisciplinary, with research activities including human visual psychophysics, eye tracking, fMRI, EEG, TMS and animal behavior, calcium imaging. We are looking for a person with a broad technical knowledge base, who loves working in a scientific environment and who is curious, open-minded, and able to adapt and learn new skills and solve new problems quickly. The set of skills that the individual should either already have or can quickly learn includes: MATLAB/Psychotoolbox, Python/OpenCV, Julia/OpenGL, Java, graphics and display technologies, EEG equipment and similar, eye tracking, microscope, laser, optics, electronics/controllers/sensors, Arduino/Raspberry Pi, etc. Your application: The position is available immediately and will be open until filled. Preference will be given to applications received by November 30, 2021. We look forward to receiving your application that includes a cover letter, your curriculum vitae, relevant certificates, and three names and contacts for reference letters) only through this job portal (https://jobs.tue.mpg.de/en/132). Informal inquiries can be addressed to jobs.li@tuebingen.mpg.de. Please note that incomplete applications will not be considered.
Ilya Nemenman
The ideal candidate will work at the intersection of theoretical statistical physics and machine learning / statistical inference and will connect these fields to other existing research strengths in the Department (biological physics, soft matter physics, condensed matter and optics). The candidate will also complement the research strengths of the University more generally, for instance by adding to Emory's internationally recognized expertise in biological and biomedical sciences and in the Theory and Modeling of Living Systems. The candidate will benefit from and actively seek collaborative interactions, including with the cohort of other recruits in the university-wide AI.Humanity initiative.
N/A
The position involves providing hardware, software, data taking, and managerial support for a diverse set of brain and neuroscience research activities. Responsibilities include computer and IT support of Windows and Linux systems, programming and debugging of computer code, technical, administrative, and operational support in the research data taking process, hardware repairs and troubleshooting, equipment inventory and maintenance, supervising and training of new equipment users, and setting up, updating and managing the database of knowledge and data from research projects, personnel and activities.
The SIMple microscope: Development of a fibre-based platform for accessible SIM imaging in unconventional environments
Advancements in imaging speed, depth and resolution have made structured illumination microscopy (SIM) an increasingly powerful optical sectioning (OS) and super-resolution (SR) technique, but these developments remain inaccessible to many life science researchers due to the cost, optical complexity and delicacy of these instruments. We address these limitations by redesigning the optical path using in-line fibre components that are compact, lightweight and easily assembled in a “Plug & Play” modality, without compromising imaging performance. They can be integrated into an existing widefield microscope with a minimum of optical components and alignment, making OS-SIM more accessible to researchers with less optics experience. We also demonstrate a complete SR-SIM imaging system with dimensions 300 mm × 300 mm × 450 mm. We propose to enable accessible SIM imaging by utilising its compact, lightweight and robust design to transport it where it is needed, and image in “unconventional” environments where factors such as temperature and biosafety considerations currently limit imaging experiments.
“A Focus on 3D Printed Lenses: Rapid prototyping, low-cost microscopy and enhanced imaging for the life sciences”
High-quality glass lenses are commonplace in the design of optical instrumentation used across the biosciences. However, research-grade glass lenses are often costly, delicate and, depending on the prescription, can involve intricate and lengthy manufacturing - even more so in bioimaging applications. This seminar will outline 3D printing as a viable low-cost alternative for the manufacture of high-performance optical elements, where I will also discuss the creation of the world’s first fully 3D printed microscope and other implementations of 3D printed lenses. Our 3D printed lenses were generated using consumer-grade 3D printers and pose a 225x materials cost-saving compared to glass optics. Moreover, they can be produced in any lab or home environment and offer great potential for education and outreach. Following performance validation, our 3D printed optics were implemented in the production of a fully 3D printed microscope and demonstrated in histological imaging applications. We also applied low-cost fabrication methods to exotic lens geometries to enhance resolution and contrast across spatial scales and reveal new biological structures. Across these applications, our findings showed that 3D printed lenses are a viable substitute for commercial glass lenses, with the advantage of being relatively low-cost, accessible, and suitable for use in optical instruments. Combining 3D printed lenses with open-source 3D printed microscope chassis designs opens the doors for low-cost applications for rapid prototyping, low-resource field diagnostics, and the creation of cheap educational tools.
Computational models and experimental methods for the human cornea
The eye is a multi-component biological system, where mechanics, optics, transport phenomena and chemical reactions are strictly interlaced, characterized by the typical bio-variability in sizes and material properties. The eye’s response to external action is patient-specific and it can be predicted only by a customized approach, that accounts for the multiple physics and for the intrinsic microstructure of the tissues, developed with the aid of forefront means of computational biomechanics. Our activity in the last years has been devoted to the development of a comprehensive model of the cornea that aims at being entirely patient-specific. While the geometrical aspects are fully under control, given the sophisticated diagnostic machinery able to provide a fully three-dimensional images of the eye, the major difficulties are related to the characterization of the tissues, which require the setup of in-vivo tests to complement the well documented results of in-vitro tests. The interpretation of in-vivo tests is very complex, since the entire structure of the eye is involved and the characterization of the single tissue is not trivial. The availability of micromechanical models constructed from detailed images of the eye represents an important support for the characterization of the corneal tissues, especially in the case of pathologic conditions. In this presentation I will provide an overview of the research developed in our group in terms of computational models and experimental approaches developed for the human cornea.
Learning to see stuff
Humans are very good at visually recognizing materials and inferring their properties. Without touching surfaces, we can usually tell what they would feel like, and we enjoy vivid visual intuitions about how they typically behave. This is impressive because the retinal image that the visual system receives as input is the result of complex interactions between many physical processes. Somehow the brain has to disentangle these different factors. I will present some recent work in which we show that an unsupervised neural network trained on images of surfaces spontaneously learns to disentangle reflectance, lighting and shape. However, the disentanglement is not perfect, and we find that as a result the network not only predicts the broad successes of human gloss perception, but also the specific pattern of errors that humans exhibit on an image-by-image basis. I will argue this has important implications for thinking about appearance and vision more broadly.
Computational Imaging: Augmenting Optics with Algorithms for Biomedical Microscopy and Neural Imaging
Computational imaging seeks to achieve novel capabilities and overcome conventional limitations by combining optics and algorithms. In this seminar, I will discuss two computational imaging technologies developed in Boston University Computational Imaging Systems lab, including Intensity Diffraction Tomography and Computational Miniature Mesoscope. In our intensity diffraction tomography system, we demonstrate 3D quantitative phase imaging on a simple LED array microscope. We develop both single-scattering and multiple-scattering models to image complex biological samples. In our Computational Miniature Mesoscope, we demonstrate single-shot 3D high-resolution fluorescence imaging across a wide field-of-view in a miniaturized platform. We develop methods to characterize 3D spatially varying aberrations and physical simulator-based deep learning strategies to achieve fast and accurate reconstructions. Broadly, I will discuss how synergies between novel optical instrumentation, physical modeling, and model- and learning-based computational algorithms can push the limits in biomedical microscopy and neural imaging.