Optogenetic Control
optogenetic control
Optogenetic control of Nodal signaling patterns
Embryos issue instructions to their cells in the form of patterns of signaling activity. Within these patterns, the distribution of signaling in time and space directs the fate of embryonic cells. Tools to perturb developmental signaling with high resolution in space and time can help reveal how these patterns are decoded to make appropriate fate decisions. In this talk, I will present new optogenetic reagents and an experimental pipeline for creating designer Nodal signaling patterns in live zebrafish embryos. Our improved optoNodal reagents eliminate dark activity and improve response kinetics, without sacrificing dynamic range. We adapted an ultra-widefield microscopy platform for parallel light patterning in up to 36 embryos and demonstrated precise spatial control over Nodal signaling activity and downstream gene expression. Using this system, we demonstrate that patterned Nodal activation can initiate specification and internalization movements of endodermal precursors. Further, we used patterned illumination to generate synthetic signaling patterns in Nodal signaling mutants, rescuing several characteristic developmental defects. This study establishes an experimental toolkit for systematic exploration of Nodal signaling patterns in live embryos.
Mechanical Homeostasis of the Actin Cytoskeleton
My lab studies the design principles of cytoskeletal materials the drive cellular morphogenesis, with a focus on contractile machinery in adherent cells. In addition to force generation, a key feature of these materials are distributed force sensors which allow for rapid assembly, adaptation, repair and disintegration. Here I will describe how optogenetic control of RhoA GTPase is a powerful and versatile force spectroscopy approach of cytoskeletal assemblies and its recent use to probe repair response in actomyosin stress fibers. I will also describe our recent identification of 18 proteins from the zyxin, paxillin, Tes and Enigma families with mechanosensitive LIM (Lin11, Isl- 1 & Mec-3) domains that bind exclusively to mechanically stressed actin filaments. Our results suggest that the evolutionary emergence of contractile F-actin machinery coincided with, or required, proteins that could report on the stresses present there to maintain homeostasis of actively stressed networks.
Medial Septal GABAergic Neurons Reduce Seizure Duration Upon Wireless Optogenetic Closed-Loop Stimulation
Seizures can emerge from multiple or large foci in temporal lobe epilepsy (TLE), complicating focally targeted strategies such as surgical resection or the modulation of the activity of specific hippocampal neuronal populations through genetic or optogenetic techniques. Here, we evaluate a strategy in which optogenetic activation of medial septal GABAergic neurons (MSGNs), which provide extensive projections throughout the hippocampus, is used to control seizures. We found that MSGNs were structurally and functionally resilient in the chronic intrahippocampal kainate mouse model of TLE, which as is often the case in human TLE patients, presents with hippocampal sclerosis. Optogenetic stimulation of MSGNs modulated oscillations across the rostral to caudal extent of the hippocampus in epileptic conditions. Chronic wireless optogenetic stimulation of MSGNs, upon electrographic detection of spontaneous hippocampal seizures, resulted in reduced seizure durations. We propose MSGNs as a novel target for optogenetic control of seizures in TLE.
Vagal sensory neurons that guard the airways
The vagus nerve contains a diversity of sensory neurons that detect peripheral stimuli such as blood pressure changes at the aortic arch, lung expansion during breathing, meal-induced stomach distension, and chemotherapeutics that induce nausea. Underlying vagal sensory mechanisms are largely unresolved at a molecular level, presenting tremendously important problems in sensory biology. We charted vagal sensory neurons by single cell RNA sequencing, identifying novel cell surface receptors and classifying a staggering diversity of sensory neuron types. We then generated a collection of ires-Cre knock-in mice to target each neuron type, and adapted genetic tools for Cre-based anatomical mapping, in vivo imaging, targeted ablation, and optogenetic control of vagal neuron activity. We found different sensory neuron types that innervate the lung and exert powerful effects on breathing, others that monitor and control the digestive system, and yet others that innervate that innervate the larynx and protect the airways. Together with Ardem Patapoutian, we also identified a critical role for Piezo mechanoreceptors in the sensation of airway stretch, which underlies a classical respiratory reflex termed the Hering-Breuer inspiratory reflex, as well as in the neuronal sensation of blood pressure and the baroreceptor reflex.
A bistable inhibitory optoGPCR for multiplexed optogenetic control of neural circuits
FENS Forum 2024
Embedded system for responsive optogenetic control of spontaneous seizures in temporal lobe epilepsy
FENS Forum 2024