Optogenetics
optogenetics
Dr Jonathan Tang
This position will focus on the neural mechanisms underlying action learning in mice. Scientifically the project aims to understand the neural circuits, activities and behavioral dynamics behind how animals learn what actions to take for reward. Dopaminergic systems and associated circuitries will be the focus of investigation. This lab integrates wireless inertial sensors, closed loop algorithms, optogenetics and neural recording to pursue this goal.
Torben Ott
Research in the Decision Circuits Lab located (BCCN Berlin, Germany) focuses on the neural principles that underlie decision-making. By employing state-of-the-art tools in systems neuroscience, we seek to develop cortical circuits and ask how dopamine and serotonin enable adaptive decisions. Your job: (i) research in systems neuroscience focusing on the role of cortical serotonin for temporal cognition and decision-making (ii) use of state-of-the-art experimental tools such as quantitative psychophysics, high-throughput electrophysiology, chemical sensor imaging, and optogenetics in rats (iii) collaborative development of analyses and computational models of behavior and cortical functions.
Dr. Jasper Poort
Applications are invited for a postdoctoral research associate to study visual learning and attention brain circuits in mice. The post is based in the lab of Dr Jasper Poort in the Department of Physiology, Development and Neuroscience at the University of Cambridge. The successful candidate will work on a research project funded by the Wellcome Trust that will investigate the neural circuit mechanisms of visual learning and attention (see Poort et al., Neuron 2015, Khan et al, Nature Neuroscience 2018, Poort et al, Neuron 2021). The project combines two-photon calcium imaging, electrophysiology and optogenetic manipulation of different cell types and neural projections in visual cortical areas and decision-making brain areas to understand how mice (including mouse models of neurodevelopmental disorders) learn to become experts in different visually-guided decision-making tasks and flexibly switch attention between tasks. The successful applicant will join a supportive and multi-disciplinary research environment and collaborate with experts on learning and attention in rodents and humans, experts on learning and attention impairments in mental disorders, and computational neuroscientists. Applicants should have completed (or are about to submit) a PhD (research associate) or (under)graduate degree (research assistant) in neuroscience, biology, engineering, or other relevant disciplines. We are looking for someone with previous experience in two-photon imaging/electrophysiology/optogenetics/pharmacology/histology and behavioural training in mice, and strong data analysis skills (e.g. Matlab or Python). The research position is available from Feb 2022 onwards for an initial 2 year period with the possibility for extension. For more information about the lab see https://www.pdn.cam.ac.uk/svl/. Apply here: https://www.jobs.cam.ac.uk/job/32860/ In addition to the cover letter, CV, and contact details of 2 references, applicants are asked to provide a brief statement (500 words) describing the questions and approach they consider important for the study of the neural circuits for learning and attention in mice and their future research ambitions. The closing date for applications is 15th January 2022. Informal enquiries about the position can be made to Jasper Poort (jp816@cam.ac.uk). References: Poort, Wilmes,Chadwick, Blot, Sahani, Clopath, Mrsic-Flogel, Hofer, Khan (2021). Learning and attention increase neuronal response selectivity in mouse primary visual cortex through distinct mechanisms. Neuron https://doi.org/10.1016/j.neuron.2021.11.016 Khan, Poort, Chadwick, Blot, Sahani, Mrsic-Flogel, Hofer (2018). Distinct learning-induced changes in stimulus selectivity and interactions of GABAergic interneuron classes in visual cortex. Nature Neuroscience https://doi.org/10.1038/s41593-018-0143-z Poort, Khan, Pachitariu, Nemri, Orsolic, Krupic, Bauza, Sahani, Keller, Mrsic-Flogel, Hofer (2015). Learning Enhances Sensory and Multiple Non-sensory Representations in Primary Visual Cortex. Neuron https://doi.org/10.1016/j.neuron.2015.05.037
Dr. Tom Franken
A postdoctoral position is available in Dr. Tom Franken’s laboratory in the Department of Neuroscience at the Washington University School of Medicine in St. Louis. The project will study the neural circuits that parse visual scenes into organized collections of objects. We use a variety of techniques including high-density electrophysiology, behavior, optogenetics, and viral targeting in non-human primates. For more information on the lab, please visit sites.wustl.edu/frankenlab/. The PI is committed to mentoring and to nurturing a creative, thoughtful and collaborative lab culture. The laboratory is in an academic setting in the Department of Neuroscience at the Washington University School of Medicine in St. Louis, a large and collaborative scientific community. This provides an ideal environment to train, conduct research, and launch a career in science. Postdoctoral appointees at Washington University receive a competitive salary and a generous benefits package (hr.wustl.edu/benefits/). WashU Neuroscience is consistently ranked as one of the top 10 places worldwide for neuroscience research and offers an outstanding interdisciplinary training environment for early career researchers. In addition to high-quality research facilities, career and professional development training for postdoctoral researchers is provided through the Career Center, Teaching Center, Office of Postdoctoral Affairs, and campus groups. St. Louis is a city rich in culture, green spaces, free museums, world-class restaurants, and thriving music and arts scenes. On top of it all, St. Louis is affordable and commuting to campus is stress-free, whether you go by foot, bike, public transit, or car. The area combines the attractions of a major city with affordable lifestyle opportunities (postdoc.wustl.edu/prospective-postdocs/why-st-louis/). Washington University is dedicated to building a diverse community of individuals who are committed to contributing to an inclusive environment – fostering respect for all and welcoming individuals from diverse backgrounds, experiences and perspectives. Individuals with a commitment to these values are encouraged to apply. Additional information on being a postdoc at Washington University in St. Louis can be found at neuroscience.wustl.edu/education/postdoctoral-research/ and postdoc.wustl.edu/prospective-postdocs. Required Qualifications Ph.D. (or equivalent doctoral) degree in neuroscience (broadly defined). Strong background in either electrophysiology, behavioral techniques or scientific programming/machine learning. Preferred Qualifications Experience with training of larger animals. Experience with electrophysiology. Experience with studies of the visual system. Ability to think creatively to solve problems. Well organized and attention to detail. Excellent oral and written communication skills. Team player with a high level of initiative and motivation. Working Conditions This position works in a laboratory environment with potential exposure to biological and chemical hazards. The individual must be physically able to wear protective equipment and to provide standard care to research animals. Salary Range Base pay is commensurate with experience. Applicant Special Instructions Applicants should submit the following materials to Dr. Tom Franken at ftom@wustl.edu: 1) A cover letter explaining how their interest in the position matches their background and career goals. 2) CV or Biosketch. 3) Contact information for at least three professional references. Accommodation If you are unable to use our online application system and would like an accommodation, please email CandidateQuestions@wustl.edu or call the dedicated accommodation inquiry number at 314-935-1149 and leave a voicemail with the nature of your request. Pre-Employment Screening All external candidates receiving an offer for employment will be required to submit to pre-employment screening for this position. The screenings will include criminal background check and, as applicable for the position, other background checks, drug screen, an employment and education or licensure/certification verification, physical examination, certain vaccinations and/or governmental registry checks. All offers are contingent upon successful completion of required screening. Benefits Statement Washington University in St. Louis is committed to providing a comprehensive and competitive benefits package to our employees. Benefits eligibility is subject to employment status, full-time equivalent (FTE) workload, and weekly standard hours. Please visit our website at https://hr.wustl.edu/benefits/ to view a summary of benefits. EEO/AA Statement Washington University in St. Louis is committed to the principles and practices of equal employment opportunity and especially encourages applications by those from underrepresented groups. It is the University’s policy to provide equal opportunity and access to persons in all job titles without regard to race, ethnicity, color, national origin, age, religion, sex, sexual orientation, gender identity or expression, disability, protected veteran status, or genetic information. Diversity Statement Washington University is dedicated to building a diverse community of individuals who are committed to contributing to an inclusive environment – fostering respect for all and welcoming individuals from diverse backgrounds, experiences and perspectives. Individuals with a commitment to these values are encouraged to apply.
Nikolas Karalis
We are seeking a passionate and dedicated research technician to join our team Neuronal Circuits & Brain Dynamics at the Paris Brain Institute (ICM). Our work focuses on unraveling the fascinating mysteries of how the brain generates internal states and how neuromodulators, such as dopamine and serotonin, influence neuronal activity during behavior. To achieve our goals, we employ state-of-the-art techniques, including behavioral, optogenetic, imaging, electrophysiological, and genetic approaches in mice. Main Responsibilities • As a research technician, you are at the epicenter of our research activities and you will serve as a point of reference of the lab know-how across generations of lab members. • As a hands-on research technician, your primary responsibilities will include organizing the laboratory, maintaining basic lab infrastructure, performing routine tasks, regularly updating lab databases, ensuring the lab runs efficiently, and contributing to the team's research efforts. • Collaborating closely with the team, you will contribute to ongoing research projects and you will conduct behavioral and optogenetic experiments, carry out stereotaxic surgeries, and handle histological processing, including tissue slicing, immunostaining, and fluorescent microscopy. • You will be responsible for learning, developing, and passing on Standard Operating Procedures (SOPs) for the techniques utilized in our lab. • Additionally, in coordination with the head of the animal facility, you will supervise and ensure adherence to animal welfare guidelines, as well as maintain project permits and annual reports. • This role provides the opportunity to lead and participate in research projects to the extent of your desire. We offer competitive compensation and benefits within an interactive, interdisciplinary working environment, where cutting-edge science thrives and a dynamic, international research community awaits. As part of your role, you will receive extensive training in traditional and cutting-edge neuroscience techniques related to mice. If you are eager to join our vibrant research community and contribute to groundbreaking discoveries, we warmly welcome your application. The position is available immediately, with the potential for a permanent contract based on performance. If you would like to know more, visit our website: neuronaldynamics.eu and read about our team's mission and values. Why join our team • We are a young and vibrant group of scientists, fueled by curiosity and passion for understanding the brain. • We work as a team and use or invent cutting-edge neurotechnologies to answer fundamental questions in neuroscience. • Our team is committed to the training, mentorship, and career development of the next generation of neuroscientists. To achieve that, we foster an inclusive and supportive environment, where we can learn and advance science while having fun in the process. • Our work is multi-disciplinary, and so is our team. Irrespective of your background and project, our research environment will expose you to a diverse range of experimental and computational aspects of systems and circuits neuroscience. We thus encourage everyone to apply, especially those from underrepresented minorities. • Our team is affiliated with Inserm and is located in the Paris Brain Institute (ICM), where we have access to state-of-the-art facilities and resources. • Our vibrant community at the ICM and throughout Paris promotes broad collaboration and learning opportunities. <b>How to apply</b> If you are eager to join our vibrant research community and contribute to groundbreaking discoveries, we warmly welcome your application. The position is available immediately, with the potential for a permanent contract based on performance. Please send a statement of your past work and interests, your CV, and contact information for 1-3 references to the address: contact@neuronaldynamics.eu
Nikolas Karalis
We invite applications for postdoctoral researchers to join our team Neuronal Circuits & Brain Dynamics at the Paris Brain Institute (ICM) to study the principles of neuronal circuit organization and brain dynamics. If you are an ambitious and driven researcher, interested in experimental or computational systems and circuits neuroscience, and seeking an environment that fosters intellectual and professional growth, we invite you to consider joining our team. Together, we'll make a lasting impact on science and pave the way for your successful research career. Our team values diversity and welcomes researchers from all backgrounds and profiles. If your project ideas align with our research focus, we encourage you to get in touch with us. Research Topics We are interested in how neuronal circuits are organized and how the collective action of neurons gives rise to the emergent complex brain dynamics and behavior. We focus on how neurochemicals and bodily signals influence the brain. * We study how the simultaneous release of neuromodulators influences the activity of neurons and the coordination of brain regions * We also study how bodily signals, such as breathing, serve as fundamental elements of the oscillatory circuit architecture * We employ our approach to study the brain dynamics during behavior and sleep and their involvement in the transformation of fleeting experiences into long-term memories To answer these fundamental questions about the nature and function of the brain, we combine a range of cutting-edge neurotechnologies that enable us to observe and control the activity of the brain. We aim to identify and explore the fundamental principles of neural circuit organization and apply our understanding for the improvement of the human condition. Pure experimental, as well as computational/theoretical, or hybrid projects are available, depending on your interest and skills. Opportunities As a postdoctoral researcher in our group: • You will be an integral part of shaping our research direction and team culture. You will engage in exciting and meaningful research and will have access to all the tools necessary to push the boundaries of scientific exploration, with our cutting-edge techniques and state-of-the-art facilities. • You will have the opportunity to mentor graduate and master's students. This role enhances your leadership and communication skills while you contribute to the growth of the next generation of scientists. By guiding and collaborating with these aspiring researchers, you contribute to the collective knowledge and expertise of the team. Mentoring fosters a supportive and enriching atmosphere that reduces the mental strain of working alone on a project, as you can share ideas, problem-solve together, and gain fresh perspectives. • You will have ample opportunities to develop vital skills for your future academic career, such as mentoring, grant writing, presenting your work, publishing papers, and leading projects to completion. In parallel, you will gain invaluable first-hand experience in setting up and managing a young research team. • We encourage participation in conferences and workshops, where you can present your research findings to the wider scientific community. Why join our team • We are a young and vibrant group of scientists, fueled by curiosity and passion for understanding the brain. We work as a team and use or invent cutting-edge neurotechnologies to answer fundamental questions in neuroscience. • Our team is committed to the training, mentorship, and career development of the next generation of neuroscientists. To achieve that, we foster an inclusive and supportive environment, where we can learn and advance science while having fun in the process. • Our work is multi-disciplinary, and so is our team. Irrespective of your background and project, our research environment will expose you to a diverse range of experimental and computational aspects of systems and circuits neuroscience. We thus encourage everyone to apply, especially those from underrepresented minorities. • Working in our team will provide you with invaluable experience across all stages of research and you will have the opportunity to engage in experiment design and execution, method development, software design, and data analysis, as well as publishing and communicating research results. • Our team is affiliated with Inserm and is located in the Paris Brain Institute (ICM), where we have access to state-of-the-art facilities and resources. • Our vibrant community at the ICM and throughout Paris promotes broad collaboration and learning opportunities.
Nikolas Karalis
If you are a data scientist, programmer, or engineer, with a keen interest in helping to understand the brain, consider joining our team Neuronal Circuits & Brain Dynamics at the Paris Brain Institute (ICM). We study the principles of neuronal circuit organization and brain dynamics. Our work focuses on unraveling the fascinating mysteries of how the brain generates internal states and how neuromodulators, such as dopamine and serotonin, influence neuronal activity and communication between brain regions during behavior. To achieve our goals, we perform large-scale recordings from thousands of neurons simultaneously using multimodal recordings, including electrophysiological or optical imaging approaches. We employ state-of-the-art techniques, including behavioral, optogenetic, imaging, electrophysiological, and genetic approaches in mice to record and manipulate the brain activity during behavior. Using this unprecedented data, we will be able to understand information flow in the brain in ways that would be unimaginable only a few years ago. However, the scale and complexity of this data provide major challenges and unique opportunities. We are looking for computationally-orientated researchers to join our team as temporary or permanent staff members, to help us develop methods to interact and analyze our multi-dimensional neurophysiological and behavioral data, and to develop innovative analysis approaches and efficient processing pipelines, to accelerate the progress of our research on our path to understanding the brain. As a data analyst in our group, you will interact closely with experimentalists and contribute crucially to the research. Our team values diversity and welcomes researchers from all backgrounds and profiles. If your profile aligns with our research needs, we encourage you to get in touch with us. Main responsibilities • Organize data management pipeline • Analyze neurophysiological and behavioral data • Develop analysis methods and software tools to facilitate the analysis of multi-modal and multi-dimensional neurophysiological data • Implement cutting-edge data science approaches (statistical, computational, and ML) for complex neuroscience problems • Create robust and efficient data pipelines to extract, transform, and visualize data • Develop, test, and implement scientific software (e.g., for reproducible analysis pipelines and data storage) • Interact with experimentalists to design experiments and implement analyses • Analyze current technologies, algorithms, models, and methods • As part of your role, you will have the opportunity to collaborate with other teams, attend trainings, mentor students, have independent projects, and present at major relevant conferences (Cosyne, NeurIPS). We offer competitive compensation and benefits within an interactive, interdisciplinary working environment, where cutting-edge science thrives and a dynamic, international research community awaits.
Dr. Jasper Poort
Applications are invited for a postdoctoral research associate to study visual learning and attention brain circuits in mice. The post is based in the lab of Dr Jasper Poort in the Department of Physiology, Development and Neuroscience at the University of Cambridge. The successful candidate will work on a research project funded by the Wellcome Trust that will investigate the neural circuit mechanisms of visual learning and attention (see Poort et al., Neuron 2015, Khan et al, Nature Neuroscience 2018, Poort et al, Neuron 2021). The project combines two-photon calcium imaging, electrophysiology and optogenetic manipulation of different cell types and neural projections in visual cortical areas and decision-making brain areas to understand how mice (including mouse models of neurodevelopmental disorders) learn to become experts in different visually-guided decision-making tasks and flexibly switch attention between tasks. The successful applicant will join a supportive and multi-disciplinary research environment and collaborate with experts on learning and attention in rodents and humans, experts on learning and attention impairments in mental disorders, and computational neuroscientists. Applicants should have completed (or are about to submit) a PhD (research associate) or (under)graduate degree (research assistant) in neuroscience, biology, engineering, or other relevant disciplines. We are looking for someone with previous experience in two-photon imaging/electrophysiology/optogenetics/pharmacology/histology and behavioural training in mice, and strong data analysis skills (e.g. Matlab or Python). The research position is available from Feb 2022 onwards for an initial 2 year period with the possibility for extension. For more information about the lab see https://www.pdn.cam.ac.uk/svl/. Apply here: https://www.jobs.cam.ac.uk/job/32860/ In addition to the cover letter, CV, and contact details of 2 references, applicants are asked to provide a brief statement (500 words) describing the questions and approach they consider important for the study of the neural circuits for learning and attention in mice and their future research ambitions. The closing date for applications is 15th January 2022. Informal enquiries about the position can be made to Jasper Poort (jp816@cam.ac.uk). References: Poort, Wilmes,Chadwick, Blot, Sahani, Clopath, Mrsic-Flogel, Hofer, Khan (2021). Learning and attention increase neuronal response selectivity in mouse primary visual cortex through distinct mechanisms. Neuron https://doi.org/10.1016/j.neuron.2021.11.016 Khan, Poort, Chadwick, Blot, Sahani, Mrsic-Flogel, Hofer (2018). Distinct learning-induced changes in stimulus selectivity and interactions of GABAergic interneuron classes in visual cortex. Nature Neuroscience https://doi.org/10.1038/s41593-018-0143-z Poort, Khan, Pachitariu, Nemri, Orsolic, Krupic, Bauza, Sahani, Keller, Mrsic-Flogel, Hofer (2015). Learning Enhances Sensory and Multiple Non-sensory Representations in Primary Visual Cortex. Neuron https://doi.org/10.1016/j.neuron.2015.05.037
Yao Chen, PhD
Yao Chen’s laboratory at Washington University in St. Louis is seeking a passionate Postdoctoral or staff/senior scientist/engineer who is interested in building innovative optical setups and making them useful for biological discovery. The candidate should have at least 2-3 years of experience developing optical instrumentation or microscopy methods, background in fluorescence imaging, and experience developing custom imaging software. The successful applicant will design, build, and characterize innovative optical instruments for fluorescence microscopy applications. The candidate will also have opportunities to perform optical imaging experiments and quantitative data analyses for neuroscience discovery, as well as contribute to writing research papers and grant applications. The projects in the lab aim to understand how the spatial and temporal features of signals inside the cell respond to neuromodulators (chemicals in the brain), behavior state transitions, and learning. The imaging experiments are often combined with optogenetics and electrophysiology. The candidate has access to cutting-edge instrumentation within the lab, numerous core facilities within Washington University, and will be part of a vibrant and collegial neuroscience and engineering community. We are committed to mentoring and offer a creative, thoughtful, and collaborative scientific environment. We welcome individuals who value rigor, innovation, and collegiality, and will value your creativity in shaping the projects. The lab consists of a mix of kind, fearless, and dedicated students, postdocs, and staff with diverse research and cultural backgrounds. In addition to performing their own innovative work, the candidate will have opportunities to collaborate with, learn from, and mentor other lab members. Our lab is a member of the Department of Neuroscience at Washington University School of Medicine in St. Louis, a large and collegial scientific community. WashU Neuroscience is consistently ranked as one of the top 10 places worldwide for neuroscience research. Additional information on being a postdoc at Washington University in St. Louis can be found at https://neuroscience.wustl.edu/education/postdoctoral-research/ and https://postdoc.wustl.edu/prospective-postdocs/ St. Louis is a city rich in culture, green spaces, free museums, world-class restaurants, and thriving music and arts scenes. On top of it all, St. Louis is affordable and commuting to Washington University’s campuses is stress-free, whether you go by foot, bike, public transit, or car. The area combines the attractions of a major city with affordable lifestyle opportunities. Washington University is dedicated to building a diverse community of individuals who are committed to contributing to an inclusive environment – fostering respect for all and welcoming individuals from diverse backgrounds, experiences and perspectives. Individuals with a commitment to these values are encouraged to apply. Minimum education & experience The appointee will have earned a Master’s degree (for staff scientist) or Ph.D. (for postdoctoral associate or senior scientist) by the time of starting the appointment. Applicants should submit their CV, a cover letter explaining their background and interest in the position, and whether they are applying to the scientist or postdoctoral position, as well as 3 references to Dr. Yao Chen (yaochen@wustl.edu).
Dr. Michele Insanally
The Insanally Lab is hiring postdocs to study the neural basis of auditory perception and learning. We incorporate a wide range of techniques including behavioral paradigms, in vivo multi-region neural recordings, optogenetics, chemogenetics, fiber photometry, and novel computational methods. Our lab is super supportive, collaborative, and we take mentoring seriously! Located at Pitt, our lab is part of a large systems neuroscience community that includes CNBC and CMU. For inquiries, feel free to reach out to me here: mni@pitt.edu. To find out more about our work, visit Insanallylab.com
Dr. Peter Petersen
We are seeking a highly motivated postdoctoral fellow for a project addressing the generation and functions of theta oscillations in spatial navigation using systems neuroscience and population-level approaches. The research will take place at the Department of Neuroscience (in.ku.dk) at University of Copenhagen in the lab of Dr. Peter C. Petersen (PetersenLab.org). The project involves performing electrophysiological recordings from freely moving animals using chronically implanted high-density Neuropixels silicon probes and applying optogenetics for single cell tagging, and behavioral manipulations. Learn more about the position and the application process here: https://employment.ku.dk/faculty/?show=157309
Dr. Yoav Livneh
We are looking for enthusiastic students and researchers from diverse backgrounds, including (but not limited to) biology, physics, medicine, physiology, psychology, engineering, and more. We have several ERC-funded positions at different levels.
Dr. Jasper Poort, Prof. Ole Paulsen, Prof. Jeff Dalley, Dr. Steve Sawiak
Applications are invited for two Postdoctoral Research Associate positions to study GABAergic mechanisms in mouse visual learning. One will primarily focus on measuring GABA using magnetic resonance spectroscopy and will be based in the laboratories of Professor Jeff Dalley (Dept. Psychology) and Dr Stephen Sawiak (Innes building, West Cambridge), the other will primarily focus on measuring GABA using recently developed genetically encoded GABA sensors with 2P microscopy and will be based in the laboratories of Professor Ole Paulsen and Dr Jasper Poort (both Department of Physiology, Development and Neuroscience) at the University of Cambridge. Both post holders will interact closely with each other and other members of the consortium. The successful candidates will investigate the role of GABAergic interneurons in visual learning. The project will combine MRS-GABA, two-photon GABA and calcium imaging, electrophysiology, optogenetic and pharmacological manipulation of cell types and neural projections in visual cortical areas and decision-making brain areas to understand how mice learn visual decision-making tasks. Applicants should have completed (or be about to submit) a PhD (Research Associate) or (under)graduate degree (Research Assistant) in neuroscience, biology, experimental psychology, engineering or other relevant disciplines. We are looking for someone with previous experience in imaging/electrophysiology/optogenetics/pharmacology and behavioural training in rodents, and strong data analysis skills (e.g. Matlab or Python). The positions are available from January 2022 onwards for an initial two year period with the possibility for extension. For more information about the labs see: https://www.bio.cam.ac.uk/facilities/imaging/transneuro , https://noggin.pdn.cam.ac.uk/ and https://www.pdn.cam.ac.uk/svl/. In addition to the cover letter, CV and contact details of two referees, applicants are asked to provide a brief statement (500 words) describing the questions and approach they consider important for the study of the role of cortical inhibition in visual learning and their future research ambitions. The research is part of a new Wellcome Trust funded Collaborative award that brings together a cross-disciplinary team of international experts to investigate the role of GABAergic inhibition in learning. The programme bridges work across species (mice, humans) and scales (local circuits, global networks) and capitalises on cutting-edge methodological developments in our team: a) human/animal ultra high-field MR Spectroscopy and functional brain imaging (Emir lab, Purdue; Kourtzi and Sawiak labs, Cambridge), b) neuroengineering tools including optical GABA sensors (Looger lab: UCSD) and electrophoretic drug delivery (Malliaras lab, Cambridge), cellular imaging, optogenetics, electrophysiology, neuropharmacology (Paulsen, Dalley, Poort labs, Cambridge; Rusakov lab: UCL). This network provides unique opportunities for cross-disciplinary training in innovative animal and human neuroscience methodologies, neurotechnology and computational science. Successful applicants will be integrated in a diverse collaborative team and have the opportunity to participate in workshops and exchange visits across labs to facilitate cross-disciplinary training and collaborative working. Apply here: https://www.jobs.cam.ac.uk/job/32553/ Informal enquiries about the position can be made to Jasper Poort (jp816@cam.ac.uk), Ole Paulsen (op210@cam.ac.uk), Jeff Dalley (jwd20@cam.ac.uk) and MR physicist Steve Sawiak (sjs80@cam.ac.uk).
Dr. Jasper Poort
Applications are invited for a postdoctoral research associate to study visual learning and attention brain circuits in mice. The post is based in the lab of Dr Jasper Poort in the Department of Physiology, Development and Neuroscience at the University of Cambridge. The successful candidate will work on a research project funded by the Wellcome Trust that will investigate the neural circuit mechanisms of visual learning and attention (see Poort et al., Neuron 2015, Khan et al, Nature Neuroscience 2018, Poort et al, Neuron 2021). The project combines two-photon calcium imaging, electrophysiology and optogenetic manipulation of different cell types and neural projections in visual cortical areas and decision-making brain areas to understand how mice (including mouse models of neurodevelopmental disorders) learn to become experts in different visually-guided decision-making tasks and flexibly switch attention between tasks. The successful applicant will join a supportive and multi-disciplinary research environment and collaborate with experts on learning and attention in rodents and humans, experts on learning and attention impairments in mental disorders, and computational neuroscientists. Applicants should have completed (or are about to submit) a PhD (research associate) or (under)graduate degree (research assistant) in neuroscience, biology, engineering, or other relevant disciplines. We are looking for someone with previous experience in two-photon imaging/electrophysiology/optogenetics/pharmacology/histology and behavioural training in mice, and strong data analysis skills (e.g. Matlab or Python). The research position is available from Feb 2022 onwards for an initial 2 year period with the possibility for extension. For more information about the lab see https://www.pdn.cam.ac.uk/svl/. Apply here: https://www.jobs.cam.ac.uk/job/32860/ In addition to the cover letter, CV, and contact details of 2 references, applicants are asked to provide a brief statement (500 words) describing the questions and approach they consider important for the study of the neural circuits for learning and attention in mice and their future research ambitions. The closing date for applications is 15th January 2022. Informal enquiries about the position can be made to Jasper Poort (jp816@cam.ac.uk). References: Poort, Wilmes,Chadwick, Blot, Sahani, Clopath, Mrsic-Flogel, Hofer, Khan (2021). Learning and attention increase neuronal response selectivity in mouse primary visual cortex through distinct mechanisms. Neuron https://doi.org/10.1016/j.neuron.2021.11.016 Khan, Poort, Chadwick, Blot, Sahani, Mrsic-Flogel, Hofer (2018). Distinct learning-induced changes in stimulus selectivity and interactions of GABAergic interneuron classes in visual cortex. Nature Neuroscience https://doi.org/10.1038/s41593-018-0143-z Poort, Khan, Pachitariu, Nemri, Orsolic, Krupic, Bauza, Sahani, Keller, Mrsic-Flogel, Hofer (2015). Learning Enhances Sensory and Multiple Non-sensory Representations in Primary Visual Cortex. Neuron https://doi.org/10.1016/j.neuron.2015.05.037
Prof Ian Oldenburg
The Oldenburg lab combines optics, multiphoton optogenetics, calcium imaging, and computation to understand the motor system. The overall goal of the Oldenburg Lab is to understand the causal relationship between neural activity and motor actions. We use advanced optical techniques such as multiphoton holographic optogenetics to control neural activity with an incredible degree of precision, writing complex patterns of activity to distributed groups of cells. Only by writing activity into the brain at the scale in which it naturally occurs (individual neurons firing distinct patterns of action potentials) can we test theories of what population activity means. We read out the effects of these precise manipulations locally with calcium imaging, in neighboring brain regions with electrophysiology, and at the 'whole animal level' through changes in behavior. We are looking for curious motivated, and talented people with a wide range of skill sets to join our group at all levels from Technician to Postdoc.
Bianca Silva
The newly established Silva lab is seeking a Postdoctoral Fellow to study midline thalamic circuits in fear memory and fear extinction in the mouse. The Silva lab combines whole-brain functional tracing, chemogenetics, optogenetics and in vivo fiber photometry to investigate thalamic circuits involved in emotional regulation. We recently discovered that the nucleus reuniens of the thalamus mediates extinction of remote (older than 30 days) fear memories (Silva et al. Nat. Neurosci. 2021) and we are currently working to unravel its functional upstream and downstream partners. The successful candidate will design and implement experiments to elucidate and characterize the NRe-centered whole-brain circuit and identify its putative neurophysiological impairments in mouse models of PTSD. Experience with behavioral studies, stereotactic surgeries, programming, whole-brain microscopy or causal neuroscience is a plus, but is not required. The successful candidate should be highly motivated and have the ability to successfully lead a research project. The Silva lab is affiliated to the Institute of Neuroscience at the National Research Council of Italy and is located at the Neurocenter of the Humanitas Research Hospital in Rozzano, MI (https://www.humanitas-research.org/). Applicants should contact Bianca Silva (bianca.silva@in.cnr.it) with a current CV and a motivation letter. The position is full-time for 1 year, and renewable for other two. The position is immediately available and is funded by a 3-year grant by Cariplo Foundation. Within the first year, application to prestigious international postdoctoral fellowships (EMBO, Marie Curie, HFSP) is highly encouraged. Selected candidates will be directly contacted for interviews. After interview two reference letters will be requested.
Prof. Ileana Hanganu-Opatz
Our group investigates the synchronized patterns of electrical activity in the immature brain, their relevance for development of cognitive and (multi)sensory abilities and their impairment associated with neuropsychiatric disorders (www.opatzlab.com). The multidisciplinary project is funded by an EU Grant and encompasses in vivo electrophysiology and optogenetics, behavioral and pharmacological investigation. We offer state-of-the-art facilities and a stimulating scientific environment in a dynamic, young and interdisciplinary team. We guarantee extensive and individual training.
Dr Shuzo Sakata
A fully funded 3-year PhD studentship is available to work with Dr Shuzo Sakata at University of Strathclyde in Glasgow, UK. Our group has been investigating state-dependent information processing in the brain by combining a range of techniques, including in vivo high-density electrophysiological recording, Ca2+ imaging, optogenetics, behavioural analysis and computational approaches. In this PhD project, we will investigate whether and how manipulating brain states can modify Alzheimer’s disease pathology in mice by utilising state-of-the-art neurophotonic technologies. This project is funded by the Strathclyde Research Excellence Award scheme and will be aligned with an international consortium project, DEEPER, funded from the EU’s Horizon 2020 (https://www.deeperproject.eu/) by closely collaborating with Professor Keith Mathieson at the Institute of Photonics.
Dr. Anna Letizia Allegra Mascaro
We are looking for a highly motivated individual to join the Neurophotonics lab, University of Florence, as an early postdoctoral researcher. For this position, we aim to investigate common patterns of resting state functional connectivity in two mouse models of autism. The laboratory uses in vivo imaging techniques (including two-photon microscopy, wide-field fluorescence imaging and optogenetics) in mice. The successful candidate will investigate plasticity dynamics in cerebral cortex in genetically modified mice expressing fluorescent indicators of neuronal activity. The approach will be interdisciplinary and will make use of advanced optical imaging methods, like multiphoton microscopy of cortical neurons, behavioural tests, electrophysiology and immunohistochemistry.
Dr Shuzo Sakata
A postdoctoral research associate position is available to work with Dr Shuzo Sakata at University of Strathclyde in Glasgow, UK. This position is funded by the Medical Research Council (MRC). Our group has been investigating state-dependent and cell type-specific information processing in the brain by combining a range of techniques, including in vivo high-density electrophysiological recording, calcium imaging, optogenetics, behavioural analysis and computational approaches. In this project, we will investigate how functional interactions between neurons and astrocytes regulate the architecture of the sleep-wake cycle in mice by utilising state-of-the-art molecular and neurophotonic technologies. This project will also be conducted alongside the recently launched international consortium, DEEPER, funded from the EU’s Horizon 2020 (https://www.deeperproject.eu/). A successful candidate should have a PhD in Neuroscience or related fields. Experience with coding (Python or MATLAB) and in vivo experiments including optogenetics, chemogenetics and calcium imaging will be advantageous. In the first instance, candidates may send their application to Dr Shuzo Sakata (shuzo.sakata@strath.ac.uk), including a CV and a cover letter, detailing their motivation for this project and their career goal.
Professor Maria Geffen
The Geffen laboratory at the University of Pennsylvania has multiple postdoctoral positions open in systems neuroscience with the broad goal of understanding the neuronal circuits for auditory perception and learning. We are looking for energetic and talented scientists interested in studying the function of the brain. The postdoctoral fellow will have the opportunity to learn and apply a host of systems neuroscience techniques, including two-photon imaging of population activity, optogenetic manipulations, large-scale electrophysiology and behavior in mice. Prior experience with some of these methods is preferred, but not required. Depending on the candidate’s interests, all projects provide an opportunity to learn and apply advanced computational methods, including dynamic systems analysis of neuronal population activity; Bayesian approaches for understanding the relation between neuronal activity and behavior; machine learning methods to understand large-scale neuronal activity. We currently have openings for postdoctoral fellows for three projects: (1) Neuronal mechanisms for predictive coding: Auditory perception relies on predicting statistics of incoming signals, be it identifying the speech of a conversation partner in a crowded room or recognizing the sound of a babbling brook in a forest. The human brain detects statistical regularities in sounds as a fundamental aspect of prediction, evidenced by reduced responses to repeated sound patterns and enhanced responses to unexpected sounds. Multiple studies demonstrate that the neuronal responses to regular signals are reduced through adaptation, which can contribute to prediction. However, adaptation alone is not sufficient to account for prediction and studies at cellular and neuronal population levels in animals thus far lend only partial support to existing theories of predictive coding. The goal of the project is to close this gap in knowledge and to determine the circuits that predict signals and detect statistical regularity and its violation in auditory behavior. Funded by NIH NIDCD. (2) Neuronal circuits for learning-driven changes in auditory perception: Everyday auditory behavior depends critically on learning-driven changes in auditory perception that rely on neuronal plasticity within the auditory pathway. By combining state-of-the-art optogenetic, electrophysiological, behavioral and computational approaches, the project seeks to identify the function of specific circuit elements in auditory learning. Funded by NIH NIDCD. (3) Neuronal mechanisms for hearing under uncertainty: In everyday life, because both sensory signals and neuronal responses are noisy, important cognitive tasks, such as auditory categorization, are based on uncertain information. To overcome this limitation, listeners incorporate other types of signals, such as the statistics of sounds over short and long time scales and signals from other sensory modalities into their categorization decision processes. This project will identify the contribution of specific cell types to categorization and the neuronal mechanisms for how contextual signals bias auditory categorization. In collaboration with Dr. Yale Cohen and Dr. Konrad Kording, funded by NIH BRAIN Initiative. Our laboratory is a close community of fun-loving scientists, striving to help each other while exploring the mysteries of the brain. Our trainees have won numerous awards and have been awarded government and private foundation grants. We value diversity and promote equity in the scientific community and beyond. The systems neuroscience community at the University of Pennsylvania is top-notch and highly collaborative, and postdoctoral fellows will have opportunities to engage in interdepartmental initiatives, including MindCore, MINS and CNI. Penn has a gorgeous campus and offers many cultural activities. Philadelphia is a beautiful city with world-class music, food and entertainment. To apply, please email Dr. Geffen at mgeffen@pennmedicine.upenn.edu : a cover letter (summarize your prior research experience, why you are interested in the position, and your future plans) and your CV.
Dr Shuzo Sakata
A full-time position of a laboratory technician is available to work with Dr Shuzo Sakata at University of Strathclyde in Glasgow, UK. This position is funded by the Medical Research Council (MRC). Our group has been investigating state-dependent and cell type-specific information processing in the brain by combining a range of techniques, including in vivo high-density electrophysiological recording, calcium imaging, optogenetics, behavioural analysis and computational approaches. In this project, we will investigate how functional interactions between neurons and astrocytes regulate the sleep-wake cycle in mice by utilising state-of-the-art genetic and neurophotonic technologies. This project will also work closely in the context of a recently established international consortium, DEEPER, funded from the EU’s Horizon 2020 (https://www.deeperproject.eu/). This full-time position is expected to assist a wide range of laboratory experiments by working as a team. In the first instance, candidates may send their application to Dr Shuzo Sakata (shuzo.sakata@strath.ac.uk), including a CV and a cover letter, detailing their educational background, lab experience, motivation for this position and their career goal.
Dr. Rebekah Evans
This post-doctoral fellow will use two-photon calcium imaging with simultaneous optogenetics and electrophysiology to functionally map brain circuitry involved in motor control and Parkinson's Disease.
Dr Sylvia Schröder
The successful candidate will study information processing in the early visual system of mice using two-photon imaging, electrophysiology (Neuropixels probes), and opto- and chemogenetic manipulations. The lab’s goal is to determine how behavioural and internal states like arousal are integrated with visual responses in the retina and superior colliculus. We want to discover the underlying mechanisms and the purpose of this integration in terms of visual processing and the animal’s behavioural demands. This paper describes our previous findings. Start date: January 2021 or later Contract: for 2 years initially, funding available for 5 years (through Sir Henry Dale Fellowship, Wellcome Trust) Location: campus is just outside Brighton at the coast of South East England, surrounded by South Downs National Park, 1 h from London See the job advertisement for details on how to apply: https://www.sussex.ac.uk/about/jobs/research-fellow-in-neuroscience-4726 Informal enquiries are highly encouraged and should be made to Sylvia Schröder (sylvia.schroeder@ucl.ac.uk).
Dr Adil Khan
Applications are invited for a postdoctoral researcher position funded by the Wellcome Trust. The successful applicant will pursue a research project with the goal of understanding how brain-wide neural circuits lead to flexible cognitive behaviours in mice. The techniques employed will include chronic in-vivo two photon calcium imaging of multiple cell classes, targeted optogenetic manipulations, viral vector based functional circuit mapping, and quantitative mouse behaviour. The successful applicant will benefit from the collaborative culture of the Centre for Developmental Neurobiology at King’s College London and will have the opportunity to develop collaborations with groups studying animal models of brain disorders. Candidates must have a strong research track record. Experience with in-vivo two photon imaging, rodent behaviour and analysis of complex datasets will be highly valued. Candidates with programming skills are encouraged to apply.
Unpacking the role of the medial septum in spatial coding in the medial entorhinal cortex
Neural circuits underlying sleep structure and functions
Sleep is an active state critical for processing emotional memories encoded during waking in both humans and animals. There is a remarkable overlap between the brain structures and circuits active during sleep, particularly rapid eye-movement (REM) sleep, and the those encoding emotions. Accordingly, disruptions in sleep quality or quantity, including REM sleep, are often associated with, and precede the onset of, nearly all affective psychiatric and mood disorders. In this context, a major biomedical challenge is to better understand the underlying mechanisms of the relationship between (REM) sleep and emotion encoding to improve treatments for mental health. This lecture will summarize our investigation of the cellular and circuit mechanisms underlying sleep architecture, sleep oscillations, and local brain dynamics across sleep-wake states using electrophysiological recordings combined with single-cell calcium imaging or optogenetics. The presentation will detail the discovery of a 'somato-dendritic decoupling'in prefrontal cortex pyramidal neurons underlying REM sleep-dependent stabilization of optimal emotional memory traces. This decoupling reflects a tonic inhibition at the somas of pyramidal cells, occurring simultaneously with a selective disinhibition of their dendritic arbors selectively during REM sleep. Recent findings on REM sleep-dependent subcortical inputs and neuromodulation of this decoupling will be discussed in the context of synaptic plasticity and the optimization of emotional responses in the maintenance of mental health.
Fear learning induces synaptic potentiation between engram neurons in the rat lateral amygdala
Fear learning induces synaptic potentiation between engram neurons in the rat lateral amygdala. This study by Marios Abatis et al. demonstrates how fear conditioning strengthens synaptic connections between engram cells in the lateral amygdala, revealed through optogenetic identification of neuronal ensembles and electrophysiological measurements. The work provides crucial insights into memory formation mechanisms at the synaptic level, with implications for understanding anxiety disorders and developing targeted interventions. Presented by Dr. Kenneth Hayworth, this journal club will explore the paper's methodology linking engram cell reactivation with synaptic plasticity measurements, and discuss implications for memory decoding research.
Mouse Motor Cortex Circuits and Roles in Oromanual Behavior
I’m interested in structure-function relationships in neural circuits and behavior, with a focus on motor and somatosensory areas of the mouse’s cortex involved in controlling forelimb movements. In one line of investigation, we take a bottom-up, cellularly oriented approach and use optogenetics, electrophysiology, and related slice-based methods to dissect cell-type-specific circuits of corticospinal and other neurons in forelimb motor cortex. In another, we take a top-down ethologically oriented approach and analyze the kinematics and cortical correlates of “oromanual” dexterity as mice handle food. I'll discuss recent progress on both fronts.
Combined electrophysiological and optical recording of multi-scale neural circuit dynamics
This webinar will showcase new approaches for electrophysiological recordings using our silicon neural probes and surface arrays combined with diverse optical methods such as wide-field or 2-photon imaging, fiber photometry, and optogenetic perturbations in awake, behaving mice. Multi-modal recording of single units and local field potentials across cortex, hippocampus and thalamus alongside calcium activity via GCaMP6F in cortical neurons in triple-transgenic animals or in hippocampal astrocytes via viral transduction are brought to bear to reveal hitherto inaccessible and under-appreciated aspects of coordinated dynamics in the brain.
Roles of inhibition in stabilizing and shaping the response of cortical networks
Inhibition has long been thought to stabilize the activity of cortical networks at low rates, and to shape significantly their response to sensory inputs. In this talk, I will describe three recent collaborative projects that shed light on these issues. (1) I will show how optogenetic excitation of inhibition neurons is consistent with cortex being inhibition stabilized even in the absence of sensory inputs, and how this data can constrain the coupling strengths of E-I cortical network models. (2) Recent analysis of the effects of optogenetic excitation of pyramidal cells in V1 of mice and monkeys shows that in some cases this optogenetic input reshuffles the firing rates of neurons of the network, leaving the distribution of rates unaffected. I will show how this surprising effect can be reproduced in sufficiently strongly coupled E-I networks. (3) Another puzzle has been to understand the respective roles of different inhibitory subtypes in network stabilization. Recent data reveal a novel, state dependent, paradoxical effect of weakening AMPAR mediated synaptic currents onto SST cells. Mathematical analysis of a network model with multiple inhibitory cell types shows that this effect tells us in which conditions SST cells are required for network stabilization.
Consolidation of remote contextual memory in the neocortical memory engram
Recent studies identified memory engram neurons, a neuronal population that is recruited by initial learning and is reactivated during memory recall. Memory engram neurons are connected to one another through memory engram synapses in a distributed network of brain areas. Our central hypothesis is that an associative memory is encoded and consolidated by selective strengthening of engram synapses. We are testing this hypothesis, using a combination of engram cell labeling, optogenetic/chemogenetic, electrophysiological, and virus tracing approaches in rodent models of contextual fear conditioning. In this talk, I will discuss our findings on how synaptic plasticity in memory engram synapses contributes to the acquisition and consolidation of contextual fear memory in a distributed network of the amygdala, hippocampus, and neocortex.
Rodents to Investigate the Neural Basis of Audiovisual Temporal Processing and Perception
To form a coherent perception of the world around us, we are constantly processing and integrating sensory information from multiple modalities. In fact, when auditory and visual stimuli occur within ~100 ms of each other, individuals tend to perceive the stimuli as a single event, even though they occurred separately. In recent years, our lab, and others, have developed rat models of audiovisual temporal perception using behavioural tasks such as temporal order judgments (TOJs) and synchrony judgments (SJs). While these rodent models demonstrate metrics that are consistent with humans (e.g., perceived simultaneity, temporal acuity), we have sought to confirm whether rodents demonstrate the hallmarks of audiovisual temporal perception, such as predictable shifts in their perception based on experience and sensitivity to alterations in neurochemistry. Ultimately, our findings indicate that rats serve as an excellent model to study the neural mechanisms underlying audiovisual temporal perception, which to date remains relativity unknown. Using our validated translational audiovisual behavioural tasks, in combination with optogenetics, neuropharmacology and in vivo electrophysiology, we aim to uncover the mechanisms by which inhibitory neurotransmission and top-down circuits finely control ones’ perception. This research will significantly advance our understanding of the neuronal circuitry underlying audiovisual temporal perception, and will be the first to establish the role of interneurons in regulating the synchronized neural activity that is thought to contribute to the precise binding of audiovisual stimuli.
Manipulating single-unit theta phase-locking with PhaSER: An open-source tool for real-time phase estimation and manipulation
Zoe has developed an open-source tool PhaSER, which allows her to perform real-time oscillatory phase estimation and apply optogenetic manipulations at precise phases of hippocampal theta during high-density electrophysiological recordings in head-fixed mice while they navigate a virtual environment. The precise timing of single-unit spiking relative to network-wide oscillations (i.e., phase locking) has long been thought to maintain excitatory-inhibitory homeostasis and coordinate cognitive processes, but due to intense experimental demands, the causal influence of this phenomenon has never been determined. Thus, we developed PhaSER (Phase-locked Stimulation to Endogenous Rhythms), a tool which allows the user to explore the temporal relationship between single-unit spiking and ongoing oscillatory activity.
Prox2+ and Runx3+ vagal sensory neurons regulate esophageal motility
Sensory neurons of the vagus nerve monitor distention and stretch in the gastrointestinal tract. We used genetically guided anatomical tracing, optogenetics and electrophysiology to identify and characterize two vagal sensory neuronal subtypes expressing Prox2 and Runx3. We show that these neuronal subtypes innervate the esophagus where they display regionalized innervation patterns. Electrophysiological analyses showed that they are both low threshold mechanoreceptors but possess different adaptation properties. Lastly, genetic ablation of Prox2 and Runx3 neurons demonstrated their essential roles for esophageal peristalsis and swallowing in freely behaving animals. Our work reveals the identity and function of the vagal neurons that provide mechanosensory feedback from the esophagus to the brain and could lead to better understanding and treatment of esophageal motility disorders.
Wave-front shaping and circuit optogenetics
Modern Approaches to Behavioural Analysis
The goal of neuroscience is to understand how the nervous system controls behaviour, not only in the simplified environments of the lab, but also in the natural environments for which nervous systems evolved. In pursuing this goal, neuroscience research is supported by an ever-larger toolbox, ranging from optogenetics to connectomics. However, often these tools are coupled with reductionist approaches for linking nervous systems and behaviour. This course will introduce advanced techniques for measuring and analysing behaviour, as well as three fundamental principles as necessary to understanding biological behaviour: (1) morphology and environment; (2) action-perception closed loops and purpose; and (3) individuality and historical contingencies [1]. [1] Gomez-Marin, A., & Ghazanfar, A. A. (2019). The life of behavior. Neuron, 104(1), 25-36
Hypothalamic episode generators underlying the neural control of fertility
The hypothalamus controls diverse homeostatic functions including fertility. Neural episode generators are required to drive the intermittent pulsatile and surge profiles of reproductive hormone secretion that control gonadal function. Studies in genetic mouse models have been fundamental in defining the neural circuits forming these central pattern generators and the full range of in vitro and in vivo optogenetic and chemogenetic methodologies have enabled investigation into their mechanism of action. The seminar will outline studies defining the hypothalamic “GnRH pulse generator network” and current understanding of its operation to drive pulsatile hormone secretion.
Pynapple: a light-weight python package for neural data analysis - webinar + tutorial
In systems neuroscience, datasets are multimodal and include data-streams of various origins: multichannel electrophysiology, 1- or 2-p calcium imaging, behavior, etc. Often, the exact nature of data streams are unique to each lab, if not each project. Analyzing these datasets in an efficient and open way is crucial for collaboration and reproducibility. In this combined webinar and tutorial, Adrien Peyrache and Guillaume Viejo will present Pynapple, a Python-based data analysis pipeline for systems neuroscience. Designed for flexibility and versatility, Pynapple allows users to perform cross-modal neural data analysis via a common programming approach which facilitates easy sharing of both analysis code and data.
Pynapple: a light-weight python package for neural data analysis - webinar + tutorial
In systems neuroscience, datasets are multimodal and include data-streams of various origins: multichannel electrophysiology, 1- or 2-p calcium imaging, behavior, etc. Often, the exact nature of data streams are unique to each lab, if not each project. Analyzing these datasets in an efficient and open way is crucial for collaboration and reproducibility. In this combined webinar and tutorial, Adrien Peyrache and Guillaume Viejo will present Pynapple, a Python-based data analysis pipeline for systems neuroscience. Designed for flexibility and versatility, Pynapple allows users to perform cross-modal neural data analysis via a common programming approach which facilitates easy sharing of both analysis code and data.
Reprogramming the nociceptive circuit topology reshapes sexual behavior in C. elegans
In sexually reproducing species, males and females respond to environmental sensory cues and transform the input into sexually dimorphic traits. Yet, how sexually dimorphic behavior is encoded in the nervous system is poorly understood. We characterize the sexually dimorphic nociceptive behavior in C. elegans – hermaphrodites present a lower pain threshold than males in response to aversive stimuli, and study the underlying neuronal circuits, which are composed of the same neurons that are wired differently. By imaging receptor expression, calcium responses and glutamate secretion, we show that sensory transduction is similar in the two sexes, and therefore explore how downstream network topology shapes dimorphic behavior. We generated a computational model that replicates the observed dimorphic behavior, and used this model to predict simple network rewirings that would switch the behavior between the sexes. We then showed experimentally, using genetic manipulations, artificial gap junctions, automated tracking and optogenetics, that these subtle changes to male connectivity result in hermaphrodite-like aversive behavior in-vivo, while hermaphrodite behavior was more robust to perturbations. Strikingly, when presented with aversive cues, rewired males were compromised in finding mating partners, suggesting that the network topology that enables efficient avoidance of noxious cues would have a reproductive "cost". To summarize, we present a deconstruction of a sex-shared neural circuit that affects sexual behavior, and how to reprogram it. More broadly, our results are an example of how common neuronal circuits changed their function during evolution by subtle topological rewirings to account for different environmental and sexual needs.
Modularity and Robustness of Frontal Cortical Networks
Nuo Li (Baylor College of Medicine, USA) shares novel insights into coordinated interhemispheric large-scale neural network activity underpinning short-term memory in mice. Relevant techniques covered include: simultaneous multi-regional recordings using multiple 64-channel H probes during head-fixed behavior in mice. simultaneous optogenetics and population recording. analysis of population recordings to infer interactions between brain regions. Reference: Chen G, Kang B, Lindsey J, Druckmann S, Li N, (2021). Modularity and robustness of frontal cortex networks. Cell, 184(14):3717-3730.
Neural Representations of Social Homeostasis
How does our brain rapidly determine if something is good or bad? How do we know our place within a social group? How do we know how to behave appropriately in dynamic environments with ever-changing conditions? The Tye Lab is interested in understanding how neural circuits important for driving positive and negative motivational valence (seeking pleasure or avoiding punishment) are anatomically, genetically and functionally arranged. We study the neural mechanisms that underlie a wide range of behaviors ranging from learned to innate, including social, feeding, reward-seeking and anxiety-related behaviors. We have also become interested in “social homeostasis” -- how our brains establish a preferred set-point for social contact, and how this maintains stability within a social group. How are these circuits interconnected with one another, and how are competing mechanisms orchestrated on a neural population level? We employ optogenetic, electrophysiological, electrochemical, pharmacological and imaging approaches to probe these circuits during behavior.
Cognitive experience alters cortical involvement in navigation decisions
The neural correlates of decision-making have been investigated extensively, and recent work aims to identify under what conditions cortex is actually necessary for making accurate decisions. We discovered that mice with distinct cognitive experiences, beyond sensory and motor learning, use different cortical areas and neural activity patterns to solve the same task, revealing past learning as a critical determinant of whether cortex is necessary for decision tasks. We used optogenetics and calcium imaging to study the necessity and neural activity of multiple cortical areas in mice with different training histories. Posterior parietal cortex and retrosplenial cortex were mostly dispensable for accurate performance of a simple navigation-based visual discrimination task. In contrast, these areas were essential for the same simple task when mice were previously trained on complex tasks with delay periods or association switches. Multi-area calcium imaging showed that, in mice with complex-task experience, single-neuron activity had higher selectivity and neuron-neuron correlations were weaker, leading to codes with higher task information. Therefore, past experience is a key factor in determining whether cortical areas have a causal role in decision tasks.
Cortex-dependent corrections as the mouse tongue reaches for and misses targets
Brendan Ito (Cornell University, USA) and Teja Bollu (Salk Institute, USA) share unique insights into rapid online motor corrections during mouse licking, analogous to primate goal-oriented reaching. Techniques covered include large-scale single unit recording during behaviour with optogenetics, and a deep-learning-based neural network to resolve 3D tongue kinematics during licking.
Network science and network medicine: New strategies for understanding and treating the biological basis of mental ill-health
The last twenty years have witnessed extraordinarily rapid progress in basic neuroscience, including breakthrough technologies such as optogenetics, and the collection of unprecedented amounts of neuroimaging, genetic and other data relevant to neuroscience and mental health. However, the translation of this progress into improved understanding of brain function and dysfunction has been comparatively slow. As a result, the development of therapeutics for mental health has stagnated too. One central challenge has been to extract meaning from these large, complex, multivariate datasets, which requires a shift towards systems-level mathematical and computational approaches. A second challenge has been reconciling different scales of investigation, from genes and molecules to cells, circuits, tissue, whole-brain, and ultimately behaviour. In this talk I will describe several strands of work using mathematical, statistical, and bioinformatic methods to bridge these gaps. Topics will include: using artificial neural networks to link the organization of large-scale brain connectivity to cognitive function; using multivariate statistical methods to link disease-related changes in brain networks to the underlying biological processes; and using network-based approaches to move from genetic insights towards drug discovey. Finally, I will discuss how simple organisms such as C. elegans can serve to inspire, test, and validate new methods and insights in networks neuroscience.
Building a Simple and Versatile Illumination System for Optogenetic Experiments
Controlling biological processes using light has increased the accuracy and speed with which researchers can manipulate many biological processes. Optical control allows for an unprecedented ability to dissect function and holds the potential for enabling novel genetic therapies. However, optogenetic experiments require adequate light sources with spatial, temporal, or intensity control, often a bottleneck for researchers. Here we detail how to build a low-cost and versatile LED illumination system that is easily customizable for different available optogenetic tools. This system is configurable for manual or computer control with adjustable LED intensity. We provide an illustrated step-by-step guide for building the circuit, making it computer-controlled, and constructing the LEDs. To facilitate the assembly of this device, we also discuss some basic soldering techniques and explain the circuitry used to control the LEDs. Using our open-source user interface, users can automate precise timing and pulsing of light on a personal computer (PC) or an inexpensive tablet. This automation makes the system useful for experiments that use LEDs to control genes, signaling pathways, and other cellular activities that span large time scales. For this protocol, no prior expertise in electronics is required to build all the parts needed or to use the illumination system to perform optogenetic experiments.
Taming chaos in neural circuits
Neural circuits exhibit complex activity patterns, both spontaneously and in response to external stimuli. Information encoding and learning in neural circuits depend on the ability of time-varying stimuli to control spontaneous network activity. In particular, variability arising from the sensitivity to initial conditions of recurrent cortical circuits can limit the information conveyed about the sensory input. Spiking and firing rate network models can exhibit such sensitivity to initial conditions that are reflected in their dynamic entropy rate and attractor dimensionality computed from their full Lyapunov spectrum. I will show how chaos in both spiking and rate networks depends on biophysical properties of neurons and the statistics of time-varying stimuli. In spiking networks, increasing the input rate or coupling strength aids in controlling the driven target circuit, which is reflected in both a reduced trial-to-trial variability and a decreased dynamic entropy rate. With sufficiently strong input, a transition towards complete network state control occurs. Surprisingly, this transition does not coincide with the transition from chaos to stability but occurs at even larger values of external input strength. Controllability of spiking activity is facilitated when neurons in the target circuit have a sharp spike onset, thus a high speed by which neurons launch into the action potential. I will also discuss chaos and controllability in firing-rate networks in the balanced state. For these, external control of recurrent dynamics strongly depends on correlations in the input. This phenomenon was studied with a non-stationary dynamic mean-field theory that determines how the activity statistics and the largest Lyapunov exponent depend on frequency and amplitude of the input, recurrent coupling strength, and network size. This shows that uncorrelated inputs facilitate learning in balanced networks. The results highlight the potential of Lyapunov spectrum analysis as a diagnostic for machine learning applications of recurrent networks. They are also relevant in light of recent advances in optogenetics that allow for time-dependent stimulation of a select population of neurons.
Dynamic dopaminergic signaling probabilistically controls the timing of self-timed movements
Human movement disorders and pharmacological studies have long suggested molecular dopamine modulates the pace of the internal clock. But how does the endogenous dopaminergic system influence the timing of our movements? We examined the relationship between dopaminergic signaling and the timing of reward-related, self-timed movements in mice. Animals were trained to initiate licking after a self-timed interval following a start cue; reward was delivered if the animal’s first lick fell within a rewarded window (3.3-7 s). The first-lick timing distributions exhibited the scalar property, and we leveraged the considerable variability in these distributions to determine how the activity of the dopaminergic system related to the animals’ timing. Surprisingly, dopaminergic signals ramped-up over seconds between the start-timing cue and the self-timed movement, with variable dynamics that predicted the movement/reward time, even on single trials. Steeply rising signals preceded early initiation, whereas slowly rising signals preceded later initiation. Higher baseline signals also predicted earlier self-timed movement. Optogenetic activation of dopamine neurons during self-timing did not trigger immediate movements, but rather caused systematic early-shifting of the timing distribution, whereas inhibition caused late-shifting, as if dopaminergic manipulation modulated the moment-to-moment probability of unleashing the planned movement. Consistent with this view, the dynamics of the endogenous dopaminergic signals quantitatively predicted the moment-by-moment probability of movement initiation. We conclude that ramping dopaminergic signals, potentially encoding dynamic reward expectation, probabilistically modulate the moment-by-moment decision of when to move. (Based on work from Hamilos et al., eLife, 2021).
Dissecting the role of accumbal D1 and D2 medium spiny neurons in information encoding
Nearly all motivated behaviors require the ability to associate outcomes with specific actions and make adaptive decisions about future behavior. The nucleus accumbens (NAc) is integrally involved in these processes. The NAc is a heterogeneous population primarily composed of D1 and D2 medium spiny projection (MSN) neurons that are thought to have opposed roles in behavior, with D1 MSNs promoting reward and D2 MSNs promoting aversion. Here we examined what types of information are encoded by the D1 and D2 MSNs using optogenetics, fiber photometry, and cellular resolution calcium imaging. First, we showed that mice responded for optical self-stimulation of both cell types, suggesting D2-MSN activation is not inherently aversive. Next, we recorded population and single cell activity patterns of D1 and D2 MSNs during reinforcement as well as Pavlovian learning paradigms that allow dissociation of stimulus value, outcome, cue learning, and action. We demonstrated that D1 MSNs respond to the presence and intensity of unconditioned stimuli – regardless of value. Conversely, D2 MSNs responded to the prediction of these outcomes during specific cues. Overall, these results provide foundational evidence for the discrete aspects of information that are encoded within the NAc D1 and D2 MSN populations. These results will significantly enhance our understanding of the involvement of the NAc MSNs in learning and memory as well as how these neurons contribute to the development and maintenance of substance use disorders.
Response of cortical networks to optogenetic stimulation: Experiment vs. theory
Optogenetics is a powerful tool that allows experimentalists to perturb neural circuits. What can we learn about a network from observing its response to perturbations? I will first describe the results of optogenetic activation of inhibitory neurons in mice cortex, and show that the results are consistent with inhibition stabilization. I will then move to experiments in which excitatory neurons are activated optogenetically, with or without visual inputs, in mice and monkeys. In some conditions, these experiments show a surprising result that the distribution of firing rates is not significantly changed by stimulation, even though firing rates of individual neurons are strongly modified. I will show in which conditions a network model of excitatory and inhibitory neurons can reproduce this feature.
Optical manipulation of neuronal circuits using holographic optogenetics
NMC4 Short Talk: An optogenetic theory of stimulation near criticality
Recent advances in optogenetics allow for stimulation of neurons with sub-millisecond spike jitter and single neuron selectivity. Already this precision has revealed new levels of cortical sensitivity: stimulating tens of neurons can yield changes in the mean firing rate of thousands of similarly tuned neurons. This extreme sensitivity suggests that cortical dynamics are near criticality. Criticality is often studied in neural systems as a non-equilibrium thermodynamic process in which scale-free patterns of activity, called avalanches, emerge between distinct states of spontaneous activity. While criticality is well studied, it is still unclear what these distinct states of spontaneous activity are and what responses we expect from stimulation of this activity. By answering these questions, optogenetic stimulation will become a new avenue for approaching criticality and understanding cortical dynamics. Here, for the first time, we study the effects of optogenetic-like stimulation on a model near criticality. We study a model of Inhibitory/Excitatory (I/E) Leaky Integrate and Fire (LIF) spiking neurons which display a region of high sensitivity as seen in experiments. We find that this region of sensitivity is, indeed, near criticality. We derive the Dynamic Mean Field Theory of this model and find that the distinct states of activity are asynchrony and synchrony. We use our theory to characterize response to various types and strengths of optogenetic stimulation. Our model and theory predict that asynchronous, near-critical dynamics can have two qualitatively different responses to stimulation: one characterized by high sensitivity, discrete event responses, and high trial-to-trial variability, and another characterized by low sensitivity, continuous responses with characteristic frequencies, and low trial-to-trial variability. While both response types may be considered near-critical in model space, networks which are closest to criticality show a hybrid of these response effects.
Targeted Activation of Hippocampal Place Cells Drives Memory-Guided Spatial Behaviour
The hippocampus is crucial for spatial navigation and episodic memory formation. Hippocampal place cells exhibit spatially selective activity within an environment and have been proposed to form the neural basis of a cognitive map of space that supports these mnemonic functions. However, the direct influence of place cell activity on spatial navigation behaviour has not yet been demonstrated. Using an ‘all-optical’ combination of simultaneous two-photon calcium imaging and two-photon holographically targeted optogenetics, we identified and selectively activated place cells that encoded behaviourally relevant locations in a virtual reality environment. Targeted stimulation of a small number of place cells was sufficient to bias the behaviour of animals during a spatial memory task, providing causal evidence that hippocampal place cells actively support spatial navigation and memory. Time permitting, I will also describe new experiments aimed at understanding the fundamental encoding mechanism that supports episodic memory, focussing on the role of hippocampal sequences across multiple timescales and behaviours.
Networking—the key to success… especially in the brain
In our everyday lives, we form connections and build up social networks that allow us to function successfully as individuals and as a society. Our social networks tend to include well-connected individuals who link us to other groups of people that we might otherwise have limited access to. In addition, we are more likely to befriend individuals who a) live nearby and b) have mutual friends. Interestingly, neurons tend to do the same…until development is perturbed. Just like social networks, neuronal networks require highly connected hubs to elicit efficient communication at minimal cost (you can’t befriend everybody you meet, nor can every neuron wire with every other!). This talk will cover some of Alex’s work showing that microscopic (cellular scale) brain networks inferred from spontaneous activity show similar complex topology to that previously described in macroscopic human brain scans. The talk will also discuss what happens when neurodevelopment is disrupted in the case of a monogenic disorder called Rett Syndrome. This will include simulations of neuronal activity and the effects of manipulation of model parameters as well as what happens when we manipulate real developing networks using optogenetics. If functional development can be restored in atypical networks, this may have implications for treatment of neurodevelopmental disorders like Rett Syndrome.
Reflex Regulation of Innate Immunity
Reflex circuits in the nervous system integrate changes in the environment with physiology. Compact clusters of brain neuron cell bodies, termed nuclei, are essential for receiving sensory input and for transmitting motor outputs to the body. These nucelii are critical relay stations which process incoming information and convert these signals to outgoing action potentials which regulate immune system functions. Thus, reflex neural circuits maintain parameters of immunological physiology within a narrow range optimal for health. Advances in neuroscience and immunology using optogenetics, pharmacogenetics, and functional mapping offer a new understanding of the importance of neural circuitry underlying immunity, and offer direct paths to new therapies.
The Open-Source UCLA Miniscope Project
The Miniscope Project -- an open-source collaborative effort—was created to accelerate innovation of miniature microscope technology and to increase global access to this technology. Currently, we are working on advancements ranging from optogenetic stimulation and wire-free operation to simultaneous optical and electrophysiological recording. Using these systems, we have uncovered mechanisms underlying temporal memory linking and investigated causes of cognitive deficits in temporal lobe epilepsy. Through innovation and optimization, this work aims to extend the reach of neuroscience research and create new avenues of scientific inquiry.
PiVR: An affordable and versatile closed-loop platform to study unrestrained sensorimotor behavior
PiVR is a system that allows experimenters to immerse small animals into virtual realities. The system tracks the position of the animal and presents light stimulation according to predefined rules, thus creating a virtual landscape in which the animal can behave. By using optogenetics, we have used PiVR to present fruit fly larvae with virtual olfactory realities, adult fruit flies with a virtual gustatory reality and zebrafish larvae with a virtual light gradient. PiVR operates at high temporal resolution (70Hz) with low latencies (<30 milliseconds) while being affordable (<US$500) and easy to build (<6 hours). Through extensive documentation (www.PiVR.org), this tool was designed to be accessible to a wide public, from high school students to professional researchers studying systems neuroscience in academia.
Advancements in multielectrode recording techniques in neurophysiology: from wire probes to neuropixels
Join us for a comprehensive introduction to multielectrode recording technologies for in vivo neurophysiology. Whether you are new to the field or have experience with one type of technology, this webinar will provide you with information about a variety of technologies, with a main focus on Neuropixels probes. Dr Kris Schoepfer, US Product Specialist at Scientifica, will provide an overview of multielectrode technologies available to record from one or more brain areas simultaneously, including: DIY multielectrode probes; Tetrodes / Hyperdrives; Silicon probes; Neuropixels. Dr Sylvia Schröder, University of Sussex, will delve deeper into the advantages of Neuropixels, highlighting the value of channel depth and the types of new biological insights that can be explored thanks to the advancements this technology brings. Presenting exciting data from the optic tract and superior colliculus, Sylvia will also discuss how Neuropixels recordings can be combined with optogenetics, and how histology can be used to identify the location of probes.
A brain circuit for curiosity
Motivational drives are internal states that can be different even in similar interactions with external stimuli. Curiosity as the motivational drive for novelty-seeking and investigating the surrounding environment is for survival as essential and intrinsic as hunger. Curiosity, hunger, and appetitive aggression drive three different goal-directed behaviors—novelty seeking, food eating, and hunting— but these behaviors are composed of similar actions in animals. This similarity of actions has made it challenging to study novelty seeking and distinguish it from eating and hunting in nonarticulating animals. The brain mechanisms underlying this basic survival drive, curiosity, and novelty-seeking behavior have remained unclear. In spite of having well-developed techniques to study mouse brain circuits, there are many controversial and different results in the field of motivational behavior. This has left the functions of motivational brain regions such as the zona incerta (ZI) still uncertain. Not having a transparent, nonreinforced, and easily replicable paradigm is one of the main causes of this uncertainty. Therefore, we chose a simple solution to conduct our research: giving the mouse freedom to choose what it wants—double freeaccess choice. By examining mice in an experimental battery of object free-access double-choice (FADC) and social interaction tests—using optogenetics, chemogenetics, calcium fiber photometry, multichannel recording electrophysiology, and multicolor mRNA in situ hybridization—we uncovered a cell type–specific cortico-subcortical brain circuit of the curiosity and novelty-seeking behavior. We found in mice that inhibitory neurons in the medial ZI (ZIm) are essential for the decision to investigate an object or a conspecific. These neurons receive excitatory input from the prelimbic cortex to signal the initiation of exploration. This signal is modulated in the ZIm by the level of investigatory motivation. Increased activity in the ZIm instigates deep investigative action by inhibiting the periaqueductal gray region. A subpopulation of inhibitory ZIm neurons expressing tachykinin 1 (TAC1) modulates the investigatory behavior.
Dopaminergic modulation of synaptic plasticity in learning and psychiatric disorders
Transient changes in dopamine activity in response to reward and punishment have been known to regulate reward-related learning. However, the cellular basis that detects the transient dopamine signaling has long been unclear. Using two-photon microscopy and optogenetics, I have shown that transient increases and decreases of dopamine modulate plasticity of dopamine D1 and D2 receptor-expressing cells in the nucleus accumbens, respectively. At the behavioral level, I characterized that these D1 and D2 cells cooperatively tune learning by generalization and discrimination learning. Interestingly, disturbance of the dopamine signaling impaired D2 cell plasticity and discrimination learning, which was analogous to salience misattribution seen in subjects with schizophrenia.
New tools for monitoring & manipulating cellular function
Dr. Looger will discuss reagents for tracking Ca2+, membrane potential ("voltage"), glutamate, GABA, acetylcholine, serotonin, dopamine, etc. He will also cover optogenetics tools and methods for correlative light/electron microscopy. They make all tools freely available to everyone and work to get them in the hands of people that have limited resources.
Visual restoration from prosthesis to optogenetic therapy
Optogenetic silencing of synaptic transmission with a mosquito rhodopsin
Long-range projections link distant circuits in the brain, allowing efficient transfer of information between regions and synchronization of distributed patterns of neural activity. Understanding the functional roles of defined neuronal projection pathways requires temporally precise manipulation of their activity, and optogenetic tools appear to be an obvious choice for such experiments. However, we and others have previously shown that commonly-used inhibitory optogenetic tools have low efficacy and off-target effects when applied to presynaptic terminals. In my talk, I will present a new solution to this problem: a targeting-enhanced mosquito homologue of the vertebrate encephalopsin (eOPN3), which upon activation can effectively suppress synaptic transmission through the Gi/o signaling pathway. Brief illumination of presynaptic terminals expressing eOPN3 triggers a lasting suppression of synaptic output that recovers spontaneously within minutes in vitro and in vivo. The efficacy of eOPN3 in suppressing presynaptic release opens new avenues for functional interrogation of long-range neuronal circuits in vivo.
Hypothalamic control of internal states underlying social behaviors in mice
Social interactions such as mating and fighting are driven by internal emotional states. How can we study internal states of an animal when it cannot tell us its subjective feelings? Especially when the meaning of the animal’s behavior is not clear to us, can we understand the underlying internal states of the animal? In this talk, I will introduce our recent work in which we used male mounting behavior in mice as an example to understand the underlying internal state of the animals. In many animal species, males exhibit mounting behavior toward females as part of the mating behavior repertoire. Interestingly, males also frequently show mounting behavior toward other males of the same species. It is not clear what the underlying motivation is - whether it is reproductive in nature or something distinct. Through detailed analysis of video and audio recordings during social interactions, we found that while male-directed and female-directed mounting behaviors are motorically similar, they can be distinguished by both the presence of ultrasonic vocalization during female-directed mounting (reproductive mounting) and the display of aggression following male-directed mounting (aggressive mounting). Using optogenetics, we further identified genetically defined neural populations in the medial preoptic area (MPOA) that mediate reproductive mounting and the ventrolateral ventromedial hypothalamus (VMHvl) that mediate aggressive mounting. In vivo microendocsopic imaging in MPOA and VMHvl revealed distinct neural ensembles that mainly encode either a reproductive or an aggressive state during which male or female directed mounting occurs. Together, these findings demonstrate that internal states are represented in the hypothalamus and that motorically similar behaviors exhibited under different contexts may reflect distinct internal states.
A metabolic function of the hippocampal sharp wave-ripple
The hippocampal formation has been implicated in both cognitive functions as well as the sensing and control of endocrine states. To identify a candidate activity pattern which may link such disparate functions, we simultaneously measured electrophysiological activity from the hippocampus and interstitial glucose concentrations in the body of freely behaving rats. We found that clusters of sharp wave-ripples (SPW-Rs) recorded from both dorsal and ventral hippocampus reliably predicted a decrease in peripheral glucose concentrations within ~10 minutes. This correlation was less dependent on circadian, ultradian, and meal-triggered fluctuations, it could be mimicked with optogenetically induced ripples, and was attenuated by pharmacogenetically suppressing activity of the lateral septum, the major conduit between the hippocampus and subcortical structures. Our findings demonstrate that a novel function of the SPW-R is to modulate peripheral glucose homeostasis and offer a mechanism for the link between sleep disruption and blood glucose dysregulation seen in type 2 diabetes and obesity.
“Circuit mechanisms for flexible behaviors”
Animals constantly modify their behavior through experience. Flexible behavior is key to our ability to adapt to the ever-changing environment. My laboratory is interested in studying the activity of neuronal ensembles in behaving animals, and how it changes with learning. We have recently set up a paradigm where mice learn to associate sensory information (two different odors) to motor outputs (lick vs no-lick) under head-fixation. We combined this with two-photon calcium imaging, which can monitor the activity of a microcircuit of many tens of neurons simultaneously from a small area of the brain. Imaging the motor cortex during the learning of this task revealed neurons with diverse task-related response types. Intriguingly, different response types were spatially intermingled; even immediately adjacent neurons often had very different response types. As the mouse learned the task under the microscope, the activity coupling of neurons with similar response types specifically increased, even though they are intermingled with neurons with dissimilar response types. This suggests that intermingled subnetworks of functionally-related neurons form in a learning-related way, an observation that became possible with our cutting-edge technique combining imaging and behavior. We are working to extend this study. How plastic are neuronal microcircuits during other forms of learning? How plastic are they in other parts of the brain? What are the cellular and molecular mechanisms of the microcircuit plasticity? Are the observed activity and plasticity required for learning? How does the activity of identified individual neurons change over days to weeks? We are asking these questions, combining a variety of techniques including in vivo two-photon imaging, optogenetics, electrophysiology, genetics and behavior.
A distinct subcircuit in medial entorhinal cortex mediates learning of interval timing behavior during immobility
Over 60 years of research has established that medial temporal lobe structures, including the hippocampus and entorhinal cortex, are necessary for the formation of episodic memories (i.e. memories of specific personal events that occur in spatial and temporal context). While prior work to establish the neural mechanisms underlying episodic memory has largely focused on questions related spatial context, recently we have begun to investigate how these brain structures could be involved in encoding aspects of temporal context. In particular, we have focused on how medial entorhinal cortex, a structure well known for its role in spatial memory, may also be involved in encoding interval time. To answer this question we have developed an instrumental paradigm for head-fixed mice that requires both immobile interval timing and locomotion-dependent navigation behavior. By combining this behavioral paradigm with large-scale cellular resolution functional imaging and optogenetic-mediated inactivation, our results suggest that MEC is required for learning of interval timing behavior and that interval timing could be mediated through regular, sequential neural activity of a distinct subpopulation of neurons in MEC that encode elapsed time during periods of immobility (Heys and Dombeck, 2018; Heys et al, 2020; Issa et al., 2020). In this talk, I will discuss these findings and discuss our on-going work to investigate the principles underlying the role of medial temporal lobe structures in timing behavior and episodic memory.
New Strategies and Approaches to Tackle and Understand Neurological Disorder
Broadly, the Mauro Costa-Mattioli laboratory (The MCM Lab) encompasses two complementary lines of research. The first one, more traditional but very important, aims at unraveling the molecular mechanisms underlying memory formation (e.g., using state-of-the-art molecular and cell-specific genetic approaches). Learning and memory disorders can strike the brain during development (e.g., Autism Spectrum Disorders and Down Syndrome), as well as during adulthood (e.g., Alzheimer’s disease). We are interested in understanding the specific circuits and molecular pathways that are primarily targeted in these disorders and how they can be restored. To tackle these questions, we use a multidisciplinary, convergent and cross-species approach that combines mouse and fly genetics, molecular biology, electrophysiology, stem cell biology, optogenetics and behavioral techniques. The second line of research, more recent and relatively unexplored, is focused on understanding how gut microbes control CNS driven-behavior and brain function. Our recent discoveries, that microbes in the gut could modulate brain function and behavior in a very powerful way, have added a whole new dimension to the classic view of how complex behaviors are controlled. The unexpected findings have opened new avenues of study for us and are currently driving my lab to answer a host of new and very interesting questions: - What are the gut microbes (and metabolites) that regulate CNS-driven behaviors? Would it be possible to develop an unbiased screening method to identify specific microbes that regulate different behaviors? - If this is the case, can we identify how members of the gut microbiome (and their metabolites) mechanistically influence brain function? - What is the communication channel between the gut microbiota and the brain? Do different gut microbes use different ways to interact with the brain? - Could disruption of the gut microbial ecology cause neurodevelopmental dysfunction? If so, what is the impact of disruption in young and adult animals? - More importantly, could specific restoration of selected bacterial strains (new generation probiotics) represent a novel therapeutic approach for the targeted treatment of neurodevelopmental disorders? - Finally, can we develop microbiota-directed therapeutic foods to repair brain dysfunction in a variety of neurological disorders?
Sensory and metasensory responses during sequence learning in the mouse somatosensory cortex
Sequential temporal ordering and patterning are key features of natural signals, used by the brain to decode stimuli and perceive them as sensory objects. Touch is one sensory modality where temporal patterning carries key information, and the rodent whisker system is a prominent model for understanding neuronal coding and plasticity underlying touch sensation. Neurons in this system are precise encoders of fluctuations in whisker dynamics down to a timescale of milliseconds, but it is not clear whether they can refine their encoding abilities as a result of learning patterned stimuli. For example, can they enhance temporal integration to become better at distinguishing sequences? To explore how cortical coding plasticity underpins sequence discrimination, we developed a task in which mice distinguished between tactile ‘word’ sequences constructed from distinct vibrations delivered to the whiskers, assembled in different orders. Animals licked to report the presence of the target sequence. Optogenetic inactivation showed that the somatosensory cortex was necessary for sequence discrimination. Two-photon imaging in layer 2/3 of the primary somatosensory “barrel” cortex (S1bf) revealed that, in well-trained animals, neurons had heterogeneous selectivity to multiple task variables including not just sensory input but also the animal’s action decision and the trial outcome (presence or absence of the predicted reward). Many neurons were activated preceding goal-directed licking, thus reflecting the animal’s learnt action in response to the target sequence; these neurons were found as soon as mice learned to associate the rewarded sequence with licking. In contrast, learning evoked smaller changes in sensory response tuning: neurons responding to stimulus features were already found in naïve mice, and training did not generate neurons with enhanced temporal integration or categorical responses. Therefore, in S1bf sequence learning results in neurons whose activity reflects the learnt association between target sequence and licking, rather than a refined representation of sensory features. Taken together with results from other laboratories, our findings suggest that neurons in sensory cortex are involved in task-specific processing and that an animal does not sense the world independently of what it needs to feel in order to guide behaviour.
CURE-ND Neurotechnology Workshop - Innovative models of neurodegenerative diseases
One of the major roadblocks to medical progress in the field of neurodegeneration is the absence of animal models that fully recapitulate features of the human diseases. Unprecedented opportunities to tackle this challenge are emerging e.g. from genome engineering and stem cell technologies, and there are intense efforts to develop models with a high translational value. Simultaneously, single-cell, multi-omics and optogenetics technologies now allow longitudinal, molecular and functional analysis of human disease processes in these models at high resolution. During this workshop, 12 experts will present recent progress in the field and discuss: - What are the most advanced disease models available to date? - Which aspects of the human disease do these accurately models, which ones do they fail to replicate? - How should models be validated? Against which reference, which standards? - What are currently the best methods to analyse these models? - What is the field still missing in terms of modelling, and of technologies to analyse disease models? CURE-ND stands for 'Catalysing a United Response in Europe to Neurodegenerative Diseases'. It is a new alliance between the German Center for Neurodegenerative Diseases (DZNE), the Paris Brain Institute (ICM), Mission Lucidity (ML, a partnership between imec, KU Leuven, UZ Leuven and VIB in Belgium) and the UK Dementia Research Institute (UK DRI). Together, these partners embrace a joint effort to accelerate the pace of scientific discovery and nurture breakthroughs in the field of neurodegenerative diseases. This Neurotechnology Workshop is the first in a series of joint events aiming at exchanging expertise, promoting scientific collaboration and building a strong community of neurodegeneration researchers in Europe and beyond.
Cortical networks for flexible decisions during spatial navigation
My lab seeks to understand how the mammalian brain performs the computations that underlie cognitive functions, including decision-making, short-term memory, and spatial navigation, at the level of the building blocks of the nervous system, cell types and neural populations organized into circuits. We have developed methods to measure, manipulate, and analyze neural circuits across various spatial and temporal scales, including technology for virtual reality, optical imaging, optogenetics, intracellular electrophysiology, molecular sensors, and computational modeling. I will present recent work that uses large scale calcium imaging to reveal the functional organization of the mouse posterior cortex for flexible decision-making during spatial navigation in virtual reality. I will also discuss work that uses optogenetics and calcium imaging during a variety of decision-making tasks to highlight how cognitive experience and context greatly alter the cortical circuits necessary for navigation decisions.
Bridging scales – combining functional ultrasound imaging, optogenetics, and electrophysiology to study neuronal networks underlying behavior
Contextual modulation of cortical processing by a higher-order thalamic input
Higher-order thalamic nuclei have extensive connections with various cortical areas. Yet their functionals roles remain not well understood. In our recent studies, using optogenetic and chemogenetic tools we manipulated the activity of a higher-order thalamic nucleus, the lateral posterior nucleus (LP, analogous to the primate pulvinar nucleus) and its projections and examined the effects on sensory discrimination and information processing functions in the cortex. We found an overall suppressive effect on layer 2/3 pyramidal neurons in the cortex, resulting in enhancements of sensory feature selectivities. These mechanisms are in place in contextual modulation of cortical processing, as well as in cross-modality modulation of sensory processing.
Circuits optogenetics and wave front shaping
Holographic control of neuronal circuits
Genetic targeting of neuronal cells with activity reporters (calcium or voltage indicators) has initiated the paradigmatic transition whereby photons have replaced electrons for reading large-scale brain activities at cellular resolution. This has alleviated the limitations of single cell or extracellular electrophysiological probing, which only give access to the activity of at best a few neurons simultaneously and to population activity of unresolved cellular origin, respectively. In parallel, optogenetics has demonstrated that targeting neuronal cells with photosensitive microbial opsins, enables the transduction of photons into electrical currents of opposite polarities thus writing, through activation or inhibition, neuronal signals in a non-invasive way. These progresses have in turn stimulated the development of sophisticated optical methods to increase spatial and temporal resolution, light penetration depth and imaging volume. Today, nonlinear microscopy, combined with spatio-temporal wave front shaping, endoscopic probes engineering or multi scan heads design, enable in vivo in depth, simultaneous recording of thousands of cells in mm 3 volumes at single-spike precision and single-cell resolution. Joint progress in opsin engineering, wave front shaping and laser development have provided the methodology, that we named circuits optogenetics, to control single or multiple target activity independently in space and time with single- neuron and single-spike precision, at large depths. Here, we will review the most significant breakthroughs of the past years, which enable reading and writing neuronal activity at the relevant spatiotemporal scale for brain circuits manipulation, with particular emphasis on the most recent advances in circuit optogenetics.
Building a synthetic cell: Understanding the clock design and function
Clock networks containing the same central architectures may vary drastically in their potential to oscillate, raising the question of what controls robustness, one of the essential functions of an oscillator. We computationally generate an atlas of oscillators and found that, while core topologies are critical for oscillations, local structures substantially modulate the degree of robustness. Strikingly, two local structures, incoherent and coherent inputs, can modify a core topology to promote and attenuate its robustness, additively. The findings underscore the importance of local modifications to the performance of the whole network. It may explain why auxiliary structures not required for oscillations are evolutionary conserved. We also extend this computational framework to search hidden network motifs for other clock functions, such as tunability that relates to the capabilities of a clock to adjust timing to external cues. Experimentally, we developed an artificial cell system in water-in-oil microemulsions, within which we reconstitute mitotic cell cycles that can perform self-sustained oscillations for 30 to 40 cycles over multiple days. The oscillation profiles, such as period, amplitude, and shape, can be quantitatively varied with the concentrations of clock regulators, energy levels, droplet sizes, and circuit design. Such innate flexibility makes it crucial to studying clock functions of tunability and stochasticity at the single-cell level. Combined with a pressure-driven multi-channel tuning setup and long-term time-lapse fluorescence microscopy, this system enables a high-throughput exploration in multi-dimension continuous parameter space and single-cell analysis of the clock dynamics and functions. We integrate this experimental platform with mathematical modeling to elucidate the topology-function relation of biological clocks. With FRET and optogenetics, we also investigate spatiotemporal cell-cycle dynamics in both homogeneous and heterogeneous microenvironments by reconstructing subcellular compartments.
Tools for Analyzing and Repairing the Brain. (Simultaneous translation to Spanish)
To enable the understanding and repair of complex biological systems, such as the brain, we are creating novel optical tools that enable molecular-resolution maps of such systems, as well as technologies for observing and controlling high-speed physiological dynamics in such systems. First, we have developed a method for imaging specimens with nanoscale precision, by embedding them in a swellable polymer, homogenizing their mechanical properties, and exposing them to water – which causes them to expand manyfold isotropically. This method, which we call expansion microscopy (ExM), enables ordinary microscopes to do nanoscale imaging, in a multiplexed fashion – important, for example, for brain mapping. Second, we have developed a set of genetically-encoded reagents, known as optogenetic tools, that when expressed in specific neurons, enable their electrical activities to be precisely driven or silenced in response to millisecond timescale pulses of light. Finally, we are designing, and evolving, novel reagents, such as fluorescent voltage indicators and somatically targeted calcium indicators, to enable the imaging of fast physiological processes in 3-D with millisecond precision. In this way we aim to enable the systematic mapping, control, and dynamical observation of complex biological systems like the brain. The talk will be simultaneously interpreted English-Spanish) by the Interpreter, Mg. Lourdes Martino. Para permitir la comprensión y reparación de sistemas biológicos complejos, como el cerebro, estamos creando herramientas ópticas novedosas que permiten crear mapas de resolución molecular de dichos sistemas, así como tecnologías para observar y controlar la dinámica fisiológica de alta velocidad en dichos sistemas. Primero, hemos desarrollado un método para obtener imágenes de muestras con precisión a nanoescala, incrustándolas en un polímero hinchable, homogeneizando sus propiedades mecánicas y exponiéndolas al agua, lo que hace que se expandan muchas veces isotrópicamente. Este método, que llamamos microscopía de expansión (ExM), permite que los microscopios ordinarios obtengan imágenes a nanoescala, de forma multiplexada, lo que es importante, por ejemplo, para el mapeo cerebral. En segundo lugar, hemos desarrollado un conjunto de reactivos codificados genéticamente, conocidos como herramientas optogenéticas, que cuando se expresan en neuronas específicas, permiten que sus actividades eléctricas sean activadas o silenciadas con precisión en respuesta a pulsos de luz en una escala de tiempo de milisegundos. Finalmente, estamos diseñando y desarrollando reactivos novedosos, como indicadores de voltaje fluorescentes e indicadores de calcio dirigidos somáticamente, para permitir la obtención de imágenes de procesos fisiológicos rápidos en 3-D con precisión de milisegundos. De esta manera, nuestro objetivo es permitir el mapeo sistemático, el control y la observación dinámica de sistemas biológicos complejos como el cerebro. La conferencia será traducida simultáneamente al español por la intérprete Mg. Lourdes Martino.
An Algorithmic Barrier to Neural Circuit Understanding
Neuroscience is witnessing extraordinary progress in experimental techniques, especially at the neural circuit level. These advances are largely aimed at enabling us to understand precisely how neural circuit computations mechanistically cause behavior. Establishing this type of causal understanding will require multiple perturbational (e.g optogenetic) experiments. It has been unclear exactly how many such experiments are needed and how this number scales with the size of the nervous system in question. Here, using techniques from Theoretical Computer Science, we prove that establishing the most extensive notions of understanding need exponentially-many experiments in the number of neurons, in many cases, unless a widely-posited hypothesis about computation is false (i.e. unless P = NP). Furthermore, using data and estimates, we demonstrate that the feasible experimental regime is typically one where the number of experiments performable scales sub-linearly in the number of neurons in the nervous system. This remarkable gulf between the worst-case and the feasible suggests an algorithmic barrier to such an understanding. Determining which notions of understanding are algorithmically tractable to establish in what contexts, thus, becomes an important new direction for investigation. TL; DR: Non-existence of tractable algorithms for neural circuit interrogation could pose a barrier to comprehensively understanding how neural circuits cause behavior. Preprint: https://biorxiv.org/content/10.1101/639724v1/…
Neuroscience tools for the 99%: On the low-fi development of high-tech lab gear for hands-on neuroscience labs and exploratory research
The public has a fascination with the brain, but little attention is given to neuroscience education prior to graduate studies in brain-related fields. One reason may be the lack of low cost and engaging teaching materials. To address this, we have developed a suite of open-source tools which are appropriate for amateurs and for use in high school, undergraduate, and graduate level educational and research programs. This lecture will provide an overview of our mission to re-engineer research-grade lab equipment using first principles and will highlight basic principles of neuroscience in a "DIY" fashion: neurophysiology, functional electrical stimulation, micro-stimulation effect on animal behavior, neuropharmacology, even neuroprosthesis and optogenetics! Finally, with faculty academic positions becoming a scarce resource, I will discuss an alternative academic career path: entrepreneurship. It is possible to be an academic, do research, publish papers, present at conferences and train students all outside the traditional university setting. I will close by discussing my career path from graduate student to PI/CEO of a startup neuroscience company.
Neural Circuit Mechanisms of Emotional and Social Processing
How does our brain rapidly determine if something is good or bad? How do we know our place within a social group? How do we know how to behave appropriately in dynamic environments with ever-changing conditions? The Tye Lab is interested in understanding how neural circuits important for driving positive and negative motivational valence (seeking pleasure or avoiding punishment) are anatomically, genetically and functionally arranged. We study the neural mechanisms that underlie a wide range of behaviours ranging from learned to innate, including social, feeding, reward-seeking and anxiety-related behaviours. We have also become interested in “social homeostasis” -- how our brains establish a preferred set-point for social contact, and how this maintains stability within a social group. How are these circuits interconnected with one another, and how are competing mechanisms orchestrated on a neural population level? We employ optogenetic, electrophysiological, electrochemical, pharmacological and imaging approaches to probe these circuits during behaviour.
Playing the piano with the cortex: role of neuronal ensembles and pattern completion in perception
The design of neural circuits, with large numbers of neurons interconnected in vast networks, strongly suggest that they are specifically build to generate emergent functional properties (1). To explore this hypothesis, we have developed two-photon holographic methods to selective image and manipulate the activity of neuronal populations in 3D in vivo (2). Using them we find that groups of synchronous neurons (neuronal ensembles) dominate the evoked and spontaneous activity of mouse primary visual cortex (3). Ensembles can be optogenetically imprinted for several days and some of their neurons trigger the entire ensemble (4). By activating these pattern completion cells in ensembles involved in visual discrimination paradigms, we can bi-directionally alter behavioural choices (5). Our results demonstrate that ensembles are necessary and sufficient for visual perception and are consistent with the possibility that neuronal ensembles are the functional building blocks of cortical circuits. 1. R. Yuste, From the neuron doctrine to neural networks. Nat Rev Neurosci 16, 487-497 (2015). 2. L. Carrillo-Reid, W. Yang, J. E. Kang Miller, D. S. Peterka, R. Yuste, Imaging and Optically Manipulating Neuronal Ensembles. Annu Rev Biophys, 46: 271-293 (2017). 3. J. E. Miller, I. Ayzenshtat, L. Carrillo-Reid, R. Yuste, Visual stimuli recruit intrinsically generated cortical ensembles. Proceedings of the National Academy of Sciences of the United States of America 111, E4053-4061 (2014). 4. L. Carrillo-Reid, W. Yang, Y. Bando, D. S. Peterka, R. Yuste, Imprinting and recalling cortical ensembles. Science 353, 691-694 (2016). 5. L. Carrillo-Reid, S. Han, W. Yang, A. Akrouh, R. Yuste, (2019). Controlling visually-guided behaviour by holographic recalling of cortical ensembles. Cell 178, 447-457. DOI:https://doi.org/10.1016/j.cell.2019.05.045.
The subcellular organization of excitation and inhibition underlying high-fidelity direction coding in the retina
Understanding how neural circuits in the brain compute information not only requires determining how individual inhibitory and excitatory elements of circuits are wired together, but also a detailed knowledge of their functional interactions. Recent advances in optogenetic techniques and mouse genetics now offer ways to specifically probe the functional properties of neural circuits with unprecedented specificity. Perhaps one of the most heavily interrogated circuits in the mouse brain is one in the retina that is involved in coding direction (reviewed by Mauss et al., 2017; Vaney et al., 2012). In this circuit, direction is encoded by specialized direction-selective (DS) ganglion cells (DSGCs), which respond robustly to objects moving in a ‘preferred’ direction but not in the opposite or ‘null’ direction (Barlow and Levick, 1965). We now know this computation relies on the coordination of three transmitter systems: glutamate, GABA and acetylcholine (ACh). In this talk, I will discuss the synaptic mechanisms that produce the spatiotemporal patterns of inhibition and excitation that are crucial for shaping directional selectivity. Special emphasis will be placed on the role of ACh, as it is unclear whether it is mediated by synaptic or non-synaptic mechanisms, which is in fact a central issue in the CNS. Barlow, H.B., and Levick, W.R. (1965). The mechanism of directionally selective units in rabbit's retina. J Physiol 178, 477-504. Mauss, A.S., Vlasits, A., Borst, A., and Feller, M. (2017). Visual Circuits for Direction Selectivity. Annu Rev Neurosci 40, 211-230. Vaney, D.I., Sivyer, B., and Taylor, W.R. (2012). Direction selectivity in the retina: symmetry and asymmetry in structure and function. Nat Rev Neurosci 13, 194-208
A paradoxical kind of sleep In Drosophila melanogaster
The dynamic nature of sleep in most animals suggests distinct stages which serve different functions. Genetic sleep induction methods in animal models provide a powerful way to disambiguate these stages and functions, although behavioural methods alone are insufficient to accurately identify what kind of sleep is being engaged. In Drosophila, activation of the dorsal fan-shaped body (dFB) promotes sleep, but it remains unclear what kind of sleep this is, how the rest of the fly brain is behaving, or if any specific sleep functions are being achieved. Here, we developed a method to record calcium activity from thousands of neurons across a volume of the fly brain during dFB-induced sleep, and we compared this to the effects of a sleep-promoting drug. We found that drug-induced spontaneous sleep decreased brain activity and connectivity, whereas dFB sleep was not different from wakefulness. Paradoxically, dFB-induced sleep was found to be even deeper than drug- induced sleep. When we probed the sleeping fly brain with salient visual stimuli, we found that the activity of visually-responsive neurons was blocked by dFB activation, confirming a disconnect from the external environment. Prolonged optogenetic dFB activation nevertheless achieved a significant sleep function, by correcting visual attention defects brought on by sleep deprivation. These results suggest that dFB activation promotes a distinct form of sleep in Drosophila, where brain activity and connectivity remain similar to wakefulness, but responsiveness to external sensory stimuli is profoundly suppressed.
Characterization of neuronal resonance and inter-areal transfer using optogenetics
COSYNE 2022
Balanced two-photon holographic bidirectional optogenetics defines the mechanism for stimulus quenching of neural variability
COSYNE 2025
InLOV: Optogenetics for light-controlled insulin signaling modulates neuronal plasticity and cerebellar-driven behavior
FENS Forum 2024
Probing neural circuit motifs in zebrafish using holographic optogenetics
FENS Forum 2024
Untangling the visuomotor circuit in intact and regenerating brains of the axolotl (Ambystoma mexicanum) using behavioral assays, calcium imaging, and optogenetics
FENS Forum 2024
Upconversion-mediated transcranial optogenetics: Juggling with photons to control fear in mice
FENS Forum 2024
Wireless headstage controlled via Bluetooth for closed-loop optogenetics experiments in rodents
FENS Forum 2024