Oscillators
oscillators
Towards model-based control of active matter: active nematics and oscillator networks
The richness of active matter's spatiotemporal patterns continues to capture our imagination. Shaping these emergent dynamics into pre-determined forms of our choosing is a grand challenge in the field. To complicate matters, multiple dynamical attractors can coexist in such systems, leading to initial condition-dependent dynamics. Consequently, non-trivial spatiotemporal inputs are generally needed to access these states. Optimal control theory provides a general framework for identifying such inputs and represents a promising computational tool for guiding experiments and interacting with various systems in soft active matter and biology. As an exemplar, I first consider an extensile active nematic fluid confined to a disk. In the absence of control, the system produces two topological defects that perpetually circulate. Optimal control identifies a time-varying active stress field that restructures the director field, flipping the system to its other attractor that rotates in the opposite direction. As a second, analogous case, I examine a small network of coupled Belousov-Zhabotinsky chemical oscillators that possesses two dominant attractors, two wave states of opposing chirality. Optimal control similarly achieves the task of attractor switching. I conclude with a few forward-looking remarks on how the same model-based control approach might come to bear on problems in biology.
A neuronal model for learning to keep a rhythmic beat
When listening to music, we typically lock onto and move to a beat (1-6 Hz). Behavioral studies on such synchronization (Repp 2005) abound, yet the neural mechanisms remain poorly understood. Some models hypothesize an array of self-sustaining entrainable neural oscillators that resonate when forced with rhythmic stimuli (Large et al. 2010). In contrast, our formulation focuses on event time estimation and plasticity: a neuronal beat generator that adapts its intrinsic frequency and phase to match the extermal rhythm. The model quickly learns new rhythms, within a few cycles as found in human behavior. When the stimulus is removed the beat generator continues to produce the learned rhythm in accordance with a synchronization continuation task.
Building a synthetic cell: Understanding the clock design and function
Clock networks containing the same central architectures may vary drastically in their potential to oscillate, raising the question of what controls robustness, one of the essential functions of an oscillator. We computationally generate an atlas of oscillators and found that, while core topologies are critical for oscillations, local structures substantially modulate the degree of robustness. Strikingly, two local structures, incoherent and coherent inputs, can modify a core topology to promote and attenuate its robustness, additively. The findings underscore the importance of local modifications to the performance of the whole network. It may explain why auxiliary structures not required for oscillations are evolutionary conserved. We also extend this computational framework to search hidden network motifs for other clock functions, such as tunability that relates to the capabilities of a clock to adjust timing to external cues. Experimentally, we developed an artificial cell system in water-in-oil microemulsions, within which we reconstitute mitotic cell cycles that can perform self-sustained oscillations for 30 to 40 cycles over multiple days. The oscillation profiles, such as period, amplitude, and shape, can be quantitatively varied with the concentrations of clock regulators, energy levels, droplet sizes, and circuit design. Such innate flexibility makes it crucial to studying clock functions of tunability and stochasticity at the single-cell level. Combined with a pressure-driven multi-channel tuning setup and long-term time-lapse fluorescence microscopy, this system enables a high-throughput exploration in multi-dimension continuous parameter space and single-cell analysis of the clock dynamics and functions. We integrate this experimental platform with mathematical modeling to elucidate the topology-function relation of biological clocks. With FRET and optogenetics, we also investigate spatiotemporal cell-cycle dynamics in both homogeneous and heterogeneous microenvironments by reconstructing subcellular compartments.
Super-Oscillators: Simulation-based inference for estimating alpha rhythm model parameters for high SNR recordings
Bernstein Conference 2024
Excitation-inhibition balance in a model of plastic coupled oscillators determines collective synchronization and connection fluctuations
FENS Forum 2024