← Back

Perceptual Reality Monitoring

Topic spotlight
TopicWorld Wide

perceptual reality monitoring

Discover seminars, jobs, and research tagged with perceptual reality monitoring across World Wide.
2 curated items2 Seminars
Updated about 3 years ago
2 items · perceptual reality monitoring
2 results
SeminarNeuroscienceRecording

Theories of consciousness: beyond the first/higher-order distinction

Jonathan Birch
London School of Economics and Political Science
Sep 8, 2022

Theories of consciousness are commonly grouped into "first-order" and "higher-order" families. As conventional wisdom has it, many more animals are likely to be conscious if a first-order theory is correct. But two recent developments have put pressure on the first/higher-order distinction. One is the argument (from Shea and Frith) that an effective global workspace mechanism must involve a form of metacognition. The second is Lau's "perceptual reality monitoring" (PRM) theory, a member of the "higher-order" family in which conscious sensory content is not re-represented, only tagged with a temporal index and marked as reliable. I argue that the first/higher-order distinction has become so blurred that it is no longer particularly useful. Moreover, the conventional wisdom about animals should not be trusted. It could be, for example, that the distribution of PRM in the animal kingdom is wider than the distribution of global broadcasting.

SeminarNeuroscienceRecording

NMC4 Short Talk: Sensory intermixing of mental imagery and perception

Nadine Dijkstra
Wellcome Centre for Human Neuroimaging
Dec 1, 2021

Several lines of research have demonstrated that internally generated sensory experience - such as during memory, dreaming and mental imagery - activates similar neural representations as externally triggered perception. This overlap raises a fundamental challenge: how is the brain able to keep apart signals reflecting imagination and reality? In a series of online psychophysics experiments combined with computational modelling, we investigated to what extent imagination and perception are confused when the same content is simultaneously imagined and perceived. We found that simultaneous congruent mental imagery consistently led to an increase in perceptual presence responses, and that congruent perceptual presence responses were in turn associated with a more vivid imagery experience. Our findings can be best explained by a simple signal detection model in which imagined and perceived signals are added together. Perceptual reality monitoring can then easily be implemented by evaluating whether this intermixed signal is strong or vivid enough to pass a ‘reality threshold’. Our model suggests that, in contrast to self-generated sensory changes during movement, our brain does not discount self-generated sensory signals during mental imagery. This has profound implications for our understanding of reality monitoring and perception in general.