Phase Precession
phase precession
Learning predictive maps in the brain for spatial navigation
The predictive map hypothesis provides a promising framework to model representations in the hippocampal formation. I will introduce a tractable implementation of a predictive map called the successor representation (SR), before presenting data showing that rats and humans display SR-like navigational choices on a novel open-field maze. Next, I will show how such a predictive map could be implemented using spatial representations found in the hippocampal formation, before finally presenting how such learning might be well approximated by phenomena that exist in the spatial memory system - namely spike-timing dependent plasticity and theta phase precession.
Phase precession in the human hippocampus and entorhinal cortex
Knowing where we are, where we have been, and where we are going is critical to many behaviors, including navigation and memory. One potential neuronal mechanism underlying this ability is phase precession, in which spatially tuned neurons represent sequences of positions by activating at progressively earlier phases of local network theta oscillations. Based on studies in rodents, researchers have hypothesized that phase precession may be a general neural pattern for representing sequential events for learning and memory. By recording human single-neuron activity during spatial navigation, we show that spatially tuned neurons in the human hippocampus and entorhinal cortex exhibit phase precession. Furthermore, beyond the neural representation of locations, we show evidence for phase precession related to specific goal states. Our find- ings thus extend theta phase precession to humans and suggest that this phenomenon has a broad func- tional role for the neural representation of both spatial and non-spatial information.
STDP and the transfer of rhythmic signals in the brain
Rhythmic activity in the brain has been reported in relation to a wide range of cognitive processes. Changes in the rhythmic activity have been related to pathological states. These observations raise the question of the origin of these rhythms: can the mechanisms responsible for generation of these rhythms and that allow the propagation of the rhythmic signal be acquired via a process of learning? In my talk I will focus on spike timing dependent plasticity (STDP) and examine under what conditions this unsupervised learning rule can facilitate the propagation of rhythmic activity downstream in the central nervous system. Next, the I will apply the theory of STDP to the whisker system and demonstrate how STDP can shape the distribution of preferred phases of firing in a downstream population. Interestingly, in both these cases STDP dynamics does not relax to a fixed-point solution, rather the synaptic weights remain dynamic. Nevertheless, STDP allows for the system to retain its functionality in the face of continuous remodeling of the entire synaptic population.
Phase precession and theta sequences in the hippocampus are spatially and temporally segregated
COSYNE 2022
Phase precession and theta sequences in the hippocampus are spatially and temporally segregated
COSYNE 2022
Rapid approximation of successor representations with STDP and theta phase precession
COSYNE 2022
Rapid approximation of successor representations with STDP and theta phase precession
COSYNE 2022