Pheromones
pheromones
Physical Computation in Insect Swarms
Our world is full of living creatures that must share information to survive and reproduce. As humans, we easily forget how hard it is to communicate within natural environments. So how do organisms solve this challenge, using only natural resources? Ideas from computer science, physics and mathematics, such as energetic cost, compression, and detectability, define universal criteria that almost all communication systems must meet. We use insect swarms as a model system for identifying how organisms harness the dynamics of communication signals, perform spatiotemporal integration of these signals, and propagate those signals to neighboring organisms. In this talk I will focus on two types of communication in insect swarms: visual communication, in which fireflies communicate over long distances using light signals, and chemical communication, in which bees serve as signal amplifiers to propagate pheromone-based information about the queen’s location.
Molecular, receptor, and neural bases for chemosensory-mediated sexual and social behavior in mice
For many animals, the sense of olfaction plays a major role in controlling sexual behaviors. Olfaction helps animals to detect mates, discriminate their status, and ultimately, decide on their behavioral output such as courtship behavior or aggression. Specific pheromone cues and receptors have provided a useful model to study how sensory inputs are converted into certain behavioral outputs. With the aid of recent advances in tools to record and manipulate genetically defined neurons, our understanding of the neural basis of sexual and social behavior has expanded substantially. I will discuss the current understanding of the neural processing of sex pheromones and the neural circuitry which controls sexual and social behaviors and ultimately reproduction, by focusing on rodent studies, mainly in mice, and the vomeronasal sensory system.
Generating and personalizing social behavior
Dr. Stowers obtained her PhD at Harvard University and remained there to undertake the study of olfactory-mediated behavior with Catherine Dulac. During this time she completed experiments identifying vomeronasal organ neurons as sensors for mouse pheromones. In 2002 she began independent work at The Scripps Research Institute where she remains today. Her lab is leveraging the olfactory system to identify and study the information code that underlies emotion-linked innate behavior. She has been a Pew Scholar and a Senior Scholar in Neuroscience from the Ellison Medical Foundation.
Leveraging olfaction to understand how the brain and the body generate social behavior
Courtship behavior is an innate model for many types of brain computations including sensory detection, learning and memory, and internal state modulation. Despite the robustness of the behavior, we have little understanding of the underlying neural circuits and mechanisms. The Stowers’ lab is leveraging the ability of specialized olfactory cues, pheromones, to specifically activate and therefore identify and study courtship circuits in the mouse. We are interested in identifying general circuit principles (specific brain nodes and information flow) that are common to all individuals, in order to additionally study how experience, gender, age, and internal state modulate and personalize behavior. We are solving two parallel sensory to motor courtship circuits, that promote social vocal calling and scent marking, to study information processing of behavior as a complete unit instead of restricting focus to a single brain region. We expect comparing and contrasting the coding logic of two courtship motor behaviors will begin to shed light on general principles of how the brain senses context, weighs experience and responds to internal state to ultimately decide appropriate action.
A potential role of larval Drosophila melanogaster cuticular pheromones in feeding and aggression behaviour
FENS Forum 2024