← Back

Photoreceptor

Topic spotlight
TopicWorld Wide

photoreceptor degeneration

Discover seminars, jobs, and research tagged with photoreceptor degeneration across World Wide.
4 curated items3 Seminars1 ePoster
Updated 8 months ago
4 items · photoreceptor degeneration
4 results
SeminarNeuroscienceRecording

An inconvenient truth: pathophysiological remodeling of the inner retina in photoreceptor degeneration

Michael Telias
University of Rochester
Apr 7, 2025

Photoreceptor loss is the primary cause behind vision impairment and blindness in diseases such as retinitis pigmentosa and age-related macular degeneration. However, the death of rods and cones allows retinoids to permeate the inner retina, causing retinal ganglion cells to become spontaneously hyperactive, severely reducing the signal-to-noise ratio, and creating interference in the communication between the surviving retina and the brain. Treatments aimed at blocking or reducing hyperactivity improve vision initiated from surviving photoreceptors and could enhance the signal fidelity generated by vision restoration methodologies.

SeminarNeuroscienceRecording

Mutation targeted gene therapy approaches to alter rod degeneration and retain cones

Maureen McCall
University of Louisville
Mar 27, 2022

My research uses electrophysiological techniques to evaluate normal retinal function, dysfunction caused by blinding retinal diseases and the restoration of function using a variety of therapeutic strategies. We can use our understanding or normal retinal function and disease-related changes to construct optimal therapeutic strategies and evaluate how they ameliorate the effects of disease. Retinitis pigmentosa (RP) is a family of blinding eye diseases caused by photoreceptor degeneration. The absence of the cells that for this primary signal leads to blindness. My interest in RP involves the evaluation of therapies to restore vision: replacing degenerated photoreceptors either with: (1) new stem or other embryonic cells, manipulated to become photoreceptors or (2) prosthetics devices that replace the photoreceptor signal with an electronic signal to light. Glaucoma is caused by increased intraocular pressure and leads to ganglion cell death, which eliminates the link between the retinal output and central visual processing. We are parsing out of the effects of increased intraocular pressure and aging on ganglion cells. Congenital Stationary Night Blindness (CSNB) is a family of diseases in which signaling is eliminated between rod photoreceptors and their postsynaptic targets, rod bipolar cells. This deafferents the retinal circuit that is responsible for vision under dim lighting. My interest in CSNB involves understanding the basic interplay between excitation and inhibition in the retinal circuit and its normal development. Because of the targeted nature of this disease, we are hopeful that a gene therapy approach can be developed to restore night vision. My work utilizes rodent disease models whose mutations mimic those found in human patients. While molecular manipulation of rodents is a fairly common approach, we have recently developed a mutant NIH miniature swine model of a common form of autosomal dominant RP (Pro23His rhodopsin mutation) in collaboration with the National Swine Resource Research Center at University of Missouri. More genetically modified mini-swine models are in the pipeline to examine other retinal diseases.

SeminarNeuroscienceRecording

Understanding how photoreceptor degeneration alters retinal signaling, and how to intervene to rescue vision

Richard Kramer
UC Berkeley
Jan 17, 2021

Age-related Macular Degeneration (AMD) and Retinitis Pigmentosa (RP) are vision disorders caused by loss of rod and cone photoreceptors, but downstream retinal neurons also show physiological and morphological changes, resulting in the emergence of hyperactivity and rhythmic firing in many retinal ganglion cells (RGC). We recently discovered that retinoic acid (RA) is a key signal that triggers hyperactivity and that blockers of RA unmask light responses in RGCs that would otherwise be obscured. Recent work is revealing where in the retina circuit RA initiates functional changes. Moreover, interfering with the RA signaling pathway with drug or gene therapy can improve spatial vision in a mouse model of RP, providing a new strategy for enhancing low vision in human RP and AMD.

ePoster

Retinal dysfunction in Huntington’s disease mouse models is characterized by an early photoreceptor degeneration and a late neuroinflammation

Jorge Navarro Calvo, Paula Martín-Climent, Fátima Cano-Cano, Francisco Martín-Loro, Samanta Ortuño-Miquel, Gema Esquiva, Violeta Gómez-Vicente, Ana I. Arroba, Luis M. Valor

FENS Forum 2024