Physiological Parameters
physiological parameters
Setting network states via the dynamics of action potential generation
To understand neural computation and the dynamics in the brain, we usually focus on the connectivity among neurons. In contrast, the properties of single neurons are often thought to be negligible, at least as far as the activity of networks is concerned. In this talk, I will contradict this notion and demonstrate how the biophysics of action-potential generation can have a decisive impact on network behaviour. Our recent theoretical work shows that, among regularly firing neurons, the somewhat unattended homoclinic type (characterized by a spike onset via a saddle homoclinic orbit bifurcation) particularly stands out: First, spikes of this type foster specific network states - synchronization in inhibitory and splayed-out/frustrated states in excitatory networks. Second, homoclinic spikes can easily be induced by changes in a variety of physiological parameters (like temperature, extracellular potassium, or dendritic morphology). As a consequence, such parameter changes can even induce switches in network states, solely based on a modification of cellular voltage dynamics. I will provide first experimental evidence and discuss functional consequences of homoclinic spikes for the design of efficient pattern-generating motor circuits in insects as well as for mammalian pathologies like febrile seizures. Our analysis predicts an interesting role for homoclinic action potentials as an integral part of brain dynamics in both health and disease.
2nd In-Vitro 2D & 3D Neuronal Networks Summit
The event is open to everyone interested in Neuroscience, Cell Biology, Drug Discovery, Disease Modeling, and Bio/Neuroengineering! This meeting is a platform bringing scientists from all over the world together and fostering scientific exchange and collaboration.
2nd In-Vitro 2D & 3D Neuronal Networks Summit
The event is open to everyone interested in Neuroscience, Cell Biology, Drug Discovery, Disease Modeling, and Bio/Neuroengineering! This meeting is a platform bringing scientists from all over the world together and fostering scientific exchange and collaboration.
Functional characterization of human iPSC-derived neurons at single-cell resolution
Recent developments in induced pluripotent stem cell (iPSC) technology have enabled easier access to human cells in vitro. With increasing availability of human iPSC-derived neurons, both healthy and disease cell lines, screening compounds for neurodegenerative diseases on human cells can potentially be performed in the earlier stages of drug discovery. To accelerate the functional characterization of iPSC-derived neurons and the effect of compounds, reproducible and relevant results are necessary. In this webinar, the speakers will: Introduce high-resolution functional imaging of human iPSC-derived neurons Showcase how to extract functional features of hundreds of cells in a cell culture sample label-free Discuss electrophysiological parameters for characterizing the differences among several human neuronal cell lines