← Back

Planning

Topic spotlight
TopicWorld Wide

planning

Discover seminars, jobs, and research tagged with planning across World Wide.
53 curated items34 Seminars16 ePosters3 Positions
Updated 1 day ago
53 items · planning
53 results
PositionArtificial Intelligence

Dr. Robert Legenstein

Graz University of Technology
Austria
Dec 5, 2025

For the recently established Cluster of Excellence CoE Bilateral Artificial Intelligence (BILAI), funded by the Austrian Science Fund (FWF), we are looking for more than 50 PhD students and 10 Post-Doc researchers (m/f/d) to join our team at one of the six leading research institutions across Austria. In BILAI, major Austrian players in Artificial Intelligence (AI) are teaming up to work towards Broad AI. As opposed to Narrow AI, which is characterized by task-specific skills, Broad AI seeks to address a wide array of problems, rather than being limited to a single task or domain. To develop its foundations, BILAI employs a Bilateral AI approach, effectively combining sub-symbolic AI (neural networks and machine learning) with symbolic AI (logic, knowledge representation, and reasoning) in various ways. Harnessing the full potential of both symbolic and sub-symbolic approaches can open new avenues for AI, enhancing its ability to solve novel problems, adapt to diverse environments, improve reasoning skills, and increase efficiency in computation and data use. These key features enable a broad range of applications for Broad AI, from drug development and medicine to planning and scheduling, autonomous traffic management, and recommendation systems. Prioritizing fairness, transparency, and explainability, the development of Broad AI is crucial for addressing ethical concerns and ensuring a positive impact on society. The research team is committed to cross-disciplinary work in order to provide theory and models for future AI and deployment to applications.

Position

Prof. Joschka Boedecker

Neurorobotics Lab, University of Freiburg, ELLIS Unit Freiburg, Department of Computer Science, BrainLinks-BrainTools Center, Collaborative Research Institute Intelligent Oncology (CRIION)
University of Freiburg, Germany
Dec 5, 2025

Full-time PhD positions on planning and learning for automated driving at the Neurorobotics Lab, University of Freiburg, Germany. The project involves working in a team with excellent peers in a larger project with an industry partner.

SeminarNeuroscienceRecording

Executive functions in the brain of deaf individuals – sensory and language effects

Velia Cardin
UCL
Mar 20, 2024

Executive functions are cognitive processes that allow us to plan, monitor and execute our goals. Using fMRI, we investigated how early deafness influences crossmodal plasticity and the organisation of executive functions in the adult human brain. Results from a range of visual executive function tasks (working memory, task switching, planning, inhibition) show that deaf individuals specifically recruit superior temporal “auditory” regions during task switching. Neural activity in auditory regions predicts behavioural performance during task switching in deaf individuals, highlighting the functional relevance of the observed cortical reorganisation. Furthermore, language grammatical skills were correlated with the level of activation and functional connectivity of fronto-parietal networks. Together, these findings show the interplay between sensory and language experience in the organisation of executive processing in the brain.

SeminarNeuroscience

Learning produces a hippocampal cognitive map in the form of an orthogonalized state machine

Nelson Spruston
Janelia, Ashburn, USA
Mar 5, 2024

Cognitive maps confer animals with flexible intelligence by representing spatial, temporal, and abstract relationships that can be used to shape thought, planning, and behavior. Cognitive maps have been observed in the hippocampus, but their algorithmic form and the processes by which they are learned remain obscure. Here, we employed large-scale, longitudinal two-photon calcium imaging to record activity from thousands of neurons in the CA1 region of the hippocampus while mice learned to efficiently collect rewards from two subtly different versions of linear tracks in virtual reality. The results provide a detailed view of the formation of a cognitive map in the hippocampus. Throughout learning, both the animal behavior and hippocampal neural activity progressed through multiple intermediate stages, gradually revealing improved task representation that mirrored improved behavioral efficiency. The learning process led to progressive decorrelations in initially similar hippocampal neural activity within and across tracks, ultimately resulting in orthogonalized representations resembling a state machine capturing the inherent struture of the task. We show that a Hidden Markov Model (HMM) and a biologically plausible recurrent neural network trained using Hebbian learning can both capture core aspects of the learning dynamics and the orthogonalized representational structure in neural activity. In contrast, we show that gradient-based learning of sequence models such as Long Short-Term Memory networks (LSTMs) and Transformers do not naturally produce such orthogonalized representations. We further demonstrate that mice exhibited adaptive behavior in novel task settings, with neural activity reflecting flexible deployment of the state machine. These findings shed light on the mathematical form of cognitive maps, the learning rules that sculpt them, and the algorithms that promote adaptive behavior in animals. The work thus charts a course toward a deeper understanding of biological intelligence and offers insights toward developing more robust learning algorithms in artificial intelligence.

SeminarNeuroscience

A recurrent network model of planning predicts hippocampal replay and human behavior

Marcelo Mattar
NYU
Oct 19, 2023

When interacting with complex environments, humans can rapidly adapt their behavior to changes in task or context. To facilitate this adaptation, we often spend substantial periods of time contemplating possible futures before acting. For such planning to be rational, the benefits of planning to future behavior must at least compensate for the time spent thinking. Here we capture these features of human behavior by developing a neural network model where not only actions, but also planning, are controlled by prefrontal cortex. This model consists of a meta-reinforcement learning agent augmented with the ability to plan by sampling imagined action sequences drawn from its own policy, which we refer to as `rollouts'. Our results demonstrate that this agent learns to plan when planning is beneficial, explaining the empirical variability in human thinking times. Additionally, the patterns of policy rollouts employed by the artificial agent closely resemble patterns of rodent hippocampal replays recently recorded in a spatial navigation task, in terms of both their spatial statistics and their relationship to subsequent behavior. Our work provides a new theory of how the brain could implement planning through prefrontal-hippocampal interactions, where hippocampal replays are triggered by -- and in turn adaptively affect -- prefrontal dynamics.

SeminarNeuroscience

Movement planning as a window into hierarchical motor control

Katja Kornysheva
Centre for Human Brain (CHBH) at the University of Birmingham, UK
Jun 14, 2023

The ability to organise one's body for action without having to think about it is taken for granted, whether it is handwriting, typing on a smartphone or computer keyboard, tying a shoelace or playing the piano. When compromised, e.g. in stroke, neurodegenerative and developmental disorders, the individuals’ study, work and day-to-day living are impacted with high societal costs. Until recently, indirect methods such as invasive recordings in animal models, computer simulations, and behavioural markers during sequence execution have been used to study covert motor sequence planning in humans. In this talk, I will demonstrate how multivariate pattern analyses of non-invasive neurophysiological recordings (MEG/EEG), fMRI, and muscular recordings, combined with a new behavioural paradigm, can help us investigate the structure and dynamics of motor sequence control before and after movement execution. Across paradigms, participants learned to retrieve and produce sequences of finger presses from long-term memory. Our findings suggest that sequence planning involves parallel pre-ordering of serial elements of the upcoming sequence, rather than a preparation of a serial trajectory of activation states. Additionally, we observed that the human neocortex automatically reorganizes the order and timing of well-trained movement sequences retrieved from memory into lower and higher-level representations on a trial-by-trial basis. This echoes behavioural transfer across task contexts and flexibility in the final hundreds of milliseconds before movement execution. These findings strongly support a hierarchical and dynamic model of skilled sequence control across the peri-movement phase, which may have implications for clinical interventions.

SeminarNeuroscience

A recurrent network model of planning explains hippocampal replay and human behavior

Guillaume Hennequin
University of Cambridge, UK
May 30, 2023

When interacting with complex environments, humans can rapidly adapt their behavior to changes in task or context. To facilitate this adaptation, we often spend substantial periods of time contemplating possible futures before acting. For such planning to be rational, the benefits of planning to future behavior must at least compensate for the time spent thinking. Here we capture these features of human behavior by developing a neural network model where not only actions, but also planning, are controlled by prefrontal cortex. This model consists of a meta-reinforcement learning agent augmented with the ability to plan by sampling imagined action sequences drawn from its own policy, which we refer to as 'rollouts'. Our results demonstrate that this agent learns to plan when planning is beneficial, explaining the empirical variability in human thinking times. Additionally, the patterns of policy rollouts employed by the artificial agent closely resemble patterns of rodent hippocampal replays recently recorded in a spatial navigation task, in terms of both their spatial statistics and their relationship to subsequent behavior. Our work provides a new theory of how the brain could implement planning through prefrontal-hippocampal interactions, where hippocampal replays are triggered by - and in turn adaptively affect - prefrontal dynamics.

SeminarNeuroscience

The neural circuits underlying planning and movement

Karel Svoboda
Allen Institute, Seattle, USA
May 10, 2023
SeminarCognition

Beyond Volition

Patrick Haggard
University College London
Apr 26, 2023

Voluntary actions are actions that agents choose to make. Volition is the set of cognitive processes that implement such choice and initiation. These processes are often held essential to modern societies, because they form the cognitive underpinning for concepts of individual autonomy and individual responsibility. Nevertheless, psychology and neuroscience have struggled to define volition, and have also struggled to study it scientifically. Laboratory experiments on volition, such as those of Libet, have been criticised, often rather naively, as focussing exclusively on meaningless actions, and ignoring the factors that make voluntary action important in the wider world. In this talk, I will first review these criticisms, and then look at extending scientific approaches to volition in three directions that may enrich scientific understanding of volition. First, volition becomes particularly important when the range of possible actions is large and unconstrained - yet most experimental paradigms involve minimal response spaces. We have developed a novel paradigm for eliciting de novo actions through verbal fluency, and used this to estimate the elusive conscious experience of generativity. Second, volition can be viewed as a mechanism for flexibility, by promoting adaptation of behavioural biases. This view departs from the tradition of defining volition by contrasting internally-generated actions with externally-triggered actions, and instead links volition to model-based reinforcement learning. By using the context of competitive games to re-operationalise the classic Libet experiment, we identified a form of adaptive autonomy that allows agents to reduce biases in their action choices. Interestingly, this mechanism seems not to require explicit understanding and strategic use of action selection rules, in contrast to classical ideas about the relation between volition and conscious, rational thought. Third, I will consider volition teleologically, as a mechanism for achieving counterfactual goals through complex problem-solving. This perspective gives a key role in mediating between understanding and planning on the one hand, and instrumental action on the other hand. Taken together, these three cognitive phenomena of generativity, flexibility, and teleology may partly explain why volition is such an important cognitive function for organisation of human behaviour and human flourishing. I will end by discussing how this enriched view of volition can relate to individual autonomy and responsibility.

SeminarNeuroscience

When to stop immune checkpoint inhibitor for malignant melanoma? Challenges in emulating target trials

Raphaël Porcher
Université Paris Cité and Université Sorbonne Paris Nord
Jan 29, 2023

Observational data have become a popular source of evidence for causal effects when no randomized controlled trial exists, or to supplement information provided by those. In practice, a wide range of designs and analytical choices exist, and one recent approach relies on the target trial emulation framework. This framework is particularly well suited to mimic what could be obtained in a specific randomized controlled trial, while avoiding time-related selection biases. In this abstract, we present how this framework could be useful to emulate trials in malignant melanoma, and the challenges faced when planning such a study using longitudinal observational data from a cohort study. More specifically, two questions are envisaged: duration of immune checkpoint inhibitors, and trials comparing treatment strategies for BRAF V600-mutant patients (targeted therapy as 1st line, followed by immunotherapy as 2nd line, vs. immunotherapy as 2nd line followed by targeted therapy as 1st line). Using data from 1027 participants to the MELBASE cohort, we detail the results for the emulation of a trial where immune checkpoint inhibitor would be stopped at 6 months vs. continued, in patients in response or with stable disease.

SeminarNeuroscienceRecording

Hierarchical transformation of visual event timing representations in the human brain: response dynamics in early visual cortex and timing-tuned responses in association cortices

Evi Hendrikx
Utrecht University
Sep 27, 2022

Quantifying the timing (duration and frequency) of brief visual events is vital to human perception, multisensory integration and action planning. For example, this allows us to follow and interact with the precise timing of speech and sports. Here we investigate how visual event timing is represented and transformed across the brain’s hierarchy: from sensory processing areas, through multisensory integration areas, to frontal action planning areas. We hypothesized that the dynamics of neural responses to sensory events in sensory processing areas allows derivation of event timing representations. This would allow higher-level processes such as multisensory integration and action planning to use sensory timing information, without the need for specialized central pacemakers or processes. Using 7T fMRI and neural model-based analyses, we found responses that monotonically increase in amplitude with visual event duration and frequency, becoming increasingly clear from primary visual cortex to lateral occipital visual field maps. Beginning in area MT/V5, we found a gradual transition from monotonic to tuned responses, with response amplitudes peaking at different event timings in different recording sites. While monotonic response components were limited to the retinotopic location of the visual stimulus, timing-tuned response components were independent of the recording sites' preferred visual field positions. These tuned responses formed a network of topographically organized timing maps in superior parietal, postcentral and frontal areas. From anterior to posterior timing maps, multiple events were increasingly integrated, response selectivity narrowed, and responses focused increasingly on the middle of the presented timing range. These results suggest that responses to event timing are transformed from the human brain’s sensory areas to the association cortices, with the event’s temporal properties being increasingly abstracted from the response dynamics and locations of early sensory processing. The resulting abstracted representation of event timing is then propagated through areas implicated in multisensory integration and action planning.

SeminarNeuroscience

Internally Organized Abstract Task Maps in the Mouse Medial Frontal Cortex

Mohamady El-Gaby
University of Oxford
Sep 27, 2022

New tasks are often similar in structure to old ones. Animals that take advantage of such conserved or “abstract” task structures can master new tasks with minimal training. To understand the neural basis of this abstraction, we developed a novel behavioural paradigm for mice: the “ABCD” task, and recorded from their medial frontal neurons as they learned. Animals learned multiple tasks where they had to visit 4 rewarded locations on a spatial maze in sequence, which defined a sequence of four “task states” (ABCD). Tasks shared the same circular transition structure (… ABCDABCD …) but differed in the spatial arrangement of rewards. As well as improving across tasks, mice inferred that A followed D (i.e. completed the loop) on the very first trial of a new task. This “zero-shot inference” is only possible if animals had learned the abstract structure of the task. Across tasks, individual medial Frontal Cortex (mFC) neurons maintained their tuning to the phase of an animal’s trajectory between rewards but not their tuning to task states, even in the absence of spatial tuning. Intriguingly, groups of mFC neurons formed modules of coherently remapping neurons that maintained their tuning relationships across tasks. Such tuning relationships were expressed as replay/preplay during sleep, consistent with an internal organisation of activity into multiple, task-matched ring attractors. Remarkably, these modules were anchored to spatial locations: neurons were tuned to specific task space “distances” from a particular spatial location. These newly discovered “Spatially Anchored Task clocks” (SATs), suggest a novel algorithm for solving abstraction tasks. Using computational modelling, we show that SATs can perform zero-shot inference on new tasks in the absence of plasticity and guide optimal policy in the absence of continual planning. These findings provide novel insights into the Frontal mechanisms mediating abstraction and flexible behaviour.

SeminarNeuroscience

Family Planning in Academia

Various Speakers
WOMEN'S NEURONETWORK
Sep 14, 2022

PROGRAM: 16:00 - 16:30 Rebuild the Academy: Supporting academic mothers during COVID-19 and beyond with Robinson W. Fulweiler & Sarah W. Davies --- 16:30 - 17:00 Experiences with academia and family life by Siri Leknes (Norway-based) and Rachel Buckley (USA-based)--- 17:00 - 17:30 Questions and discussion

SeminarNeuroscience

From Computation to Large-scale Neural Circuitry in Human Belief Updating

Tobias Donner
University Medical Center Hamburg-Eppendorf
Jun 28, 2022

Many decisions under uncertainty entail dynamic belief updating: multiple pieces of evidence informing about the state of the environment are accumulated across time to infer the environmental state, and choose a corresponding action. Traditionally, this process has been conceptualized as a linear and perfect (i.e., without loss) integration of sensory information along purely feedforward sensory-motor pathways. Yet, natural environments can undergo hidden changes in their state, which requires a non-linear accumulation of decision evidence that strikes a tradeoff between stability and flexibility in response to change. How this adaptive computation is implemented in the brain has remained unknown. In this talk, I will present an approach that my laboratory has developed to identify evidence accumulation signatures in human behavior and neural population activity (measured with magnetoencephalography, MEG), across a large number of cortical areas. Applying this approach to data recorded during visual evidence accumulation tasks with change-points, we find that behavior and neural activity in frontal and parietal regions involved in motor planning exhibit hallmarks signatures of adaptive evidence accumulation. The same signatures of adaptive behavior and neural activity emerge naturally from simulations of a biophysically detailed model of a recurrent cortical microcircuit. The MEG data further show that decision dynamics in parietal and frontal cortex are mirrored by a selective modulation of the state of early visual cortex. This state modulation is (i) specifically expressed in the alpha frequency-band, (ii) consistent with feedback of evolving belief states from frontal cortex, (iii) dependent on the environmental volatility, and (iv) amplified by pupil-linked arousal responses during evidence accumulation. Together, our findings link normative decision computations to recurrent cortical circuit dynamics and highlight the adaptive nature of decision-related long-range feedback processing in the brain.

SeminarNeuroscienceRecording

Canonical neural networks perform active inference

Takuya Isomura
RIKEN CBS
Jun 9, 2022

The free-energy principle and active inference have received a significant attention in the fields of neuroscience and machine learning. However, it remains to be established whether active inference is an apt explanation for any given neural network that actively exchanges with its environment. To address this issue, we show that a class of canonical neural networks of rate coding models implicitly performs variational Bayesian inference under a well-known form of partially observed Markov decision process model (Isomura, Shimazaki, Friston, Commun Biol, 2022). Based on the proposed theory, we demonstrate that canonical neural networks—featuring delayed modulation of Hebbian plasticity—can perform planning and adaptive behavioural control in the Bayes optimal manner, through postdiction of their previous decisions. This scheme enables us to estimate implicit priors under which the agent’s neural network operates and identify a specific form of the generative model. The proposed equivalence is crucial for rendering brain activity explainable to better understand basic neuropsychology and psychiatric disorders. Moreover, this notion can dramatically reduce the complexity of designing self-learning neuromorphic hardware to perform various types of tasks.

SeminarNeuroscienceRecording

Efficient reuse of computations in planning

Payam Piray
Daw lab, Princeton University
Apr 5, 2022

Solving complex planning problems efficiently and flexibly requires reusing expensive previous computations. The brain can do this, but how? I present a new theory that addresses this question and connects planning to hitherto distinct areas within cognitive neuroscience, such as entorhinal representation of cognitive maps and cognitive control.

SeminarNeuroscience

ISYNC: International SynAGE Conference on Healthy Ageing

Prof. Dr. Ulman Lindenberger, Prof. Dr. Carlos Dotti, Prof. Dr. Patrick Verstreken, Prof. Dr. James H. Cole, ...
Mar 28, 2022

The SynAGE committee members are thrilled to host ISYNC, the International SynAGE conference on healthy ageing, on 28-30 March 2022 in Magdeburg, Germany. This conference has been entirely organised from young scientists of the SynAGE research training group RTG 2413 (www.synage.de) and represents a unique occasion for researchers from all over the world to bring together and join great talks and sessions with us and our guests. A constantly updated list of our speakers can be found on the conference webpage: www.isync-md.de. During the conference, attendees will have access to a range of symposia which will deal with Glia, Biomarkers and Immunoresponses during ageing to neurodegeneration brain integrity and cognitive function in health and diseases. Moreover, the conference will offer social events especially for young researchers and the possibility to network together in a beautiful and suggestive location where our conference will take place: the Johanniskirche. The event will be happening in person, but due to the current pandemic situation and restrictions we are planning the conference as a hybrid event with lots of technical support to ensure that every participant can follow the talks and take part in the scientific discussions. The registration to our ISYNC conference is free of charge. However, the number of people attending the conference in person is restricted to 100. Afterwards, registrations will be accepted for joining virtually only. The registration is open until 15.02.2022. Especially for PhD and MD Students: Check our available Travel Grants, Poster Prize and SynAGE Award Dinner: https://www.isync-md.de/index.php/phd-md-specials/ If you need any further information don’t hesitate to contact us via email: contact@synage.de. We are looking forward to meet you in 2022 in Magdeburg to discuss about our research and ideas and bless together science. Your ISYNC organization Committee

SeminarNeuroscience

Mapping Individual Trajectories of Structural and Cognitive Decline in Mild Cognitive Impairment

Shreya Rajagopal
Psychology, University of Michigan
Mar 24, 2022

The US has an aging population. For the first time in US history, the number of older adults is projected to outnumber that of children by 2034. This combined with the fact that the prevalence of Alzheimer's Disease increases exponentially with age makes for a worrying combination. Mild cognitive impairment (MCI) is an intermediate stage of cognitive decline between being cognitively normal and having full-blown Dementia, with every third person with MCI progressing to dementia of the Alzheimer's Type (DAT). While there is no known way to reverse symptoms once they begin, early prediction of disease can help stall its progression and help with early financial planning. While grey matter volume loss in the Hippocampus and Entorhinal Cortex (EC) are characteristic biomarkers of DAT, little is known about the rates of decrease of these volumes within individuals in MCI state across time. We used longitudinal growth curve models to map individual trajectories of volume loss in subjects with MCI. We then looked at whether these rates of volume decrease could predict progression to DAT right in the MCI stage. Finally, we evaluated whether these rates of Hippocampal and EC volume loss were correlated with individual rates of decline of episodic memory, visuospatial ability, and executive function.

SeminarNeuroscienceRecording

Cross-modality imaging of the neural systems that support executive functions

Yaara Erez
Affiliate MRC Cognition and Brain Sciences Unit, University of Cambridge
Feb 28, 2022

Executive functions refer to a collection of mental processes such as attention, planning and problem solving, supported by a frontoparietal distributed brain network. These functions are essential for everyday life. Specifically in the context of patients with brain tumours there is a need to preserve them in order to enable good quality of life for patients. During surgeries for the removal of a brain tumour, the aim is to remove as much as possible of the tumour and at the same time prevent damage to the areas around it to preserve function and enable good quality of life for patients. In many cases, functional mapping is conducted during an awake surgery in order to identify areas critical for certain functions and avoid their surgical resection. While mapping is routinely done for functions such as movement and language, mapping executive functions is more challenging. Despite growing recognition in the importance of these functions for patient well-being in recent years, only a handful of studies addressed their intraoperative mapping. In the talk, I will present our new approach for mapping executive function areas using electrocorticography during awake brain surgery. These results will be complemented by neuroimaging data from healthy volunteers, directed at reliably localizing executive function regions in individuals using fMRI. I will also discuss more broadly challenges ofß using neuroimaging for neurosurgical applications. We aim to advance cross-modality neuroimaging of cognitive function which is pivotal to patient-tailored surgical interventions, and will ultimately lead to improved clinical outcomes.

SeminarNeuroscienceRecording

Rhythms in perception: action planning and behavioral oscillations

Maria Concetta Morrone
University of Pisa - Italy
Feb 16, 2022
SeminarNeuroscienceRecording

Hippocampal replay reflects specific past experiences rather than a plan for subsequent choice

Anna Gillespie
Frank lab, UCSF
Dec 7, 2021

Executing memory-guided behavior requires storage of information about experience and later recall of that information to inform choices. Awake hippocampal replay, when hippocampal neural ensembles briefly reactivate a representation related to prior experience, has been proposed to critically contribute to these memory-related processes. However, it remains unclear whether awake replay contributes to memory function by promoting the storage of past experiences, facilitating planning based on evaluation of those experiences, or both. We designed a dynamic spatial task that promotes replay before a memory-based choice and assessed how the content of replay related to past and future behavior. We found that replay content was decoupled from subsequent choice and instead was enriched for representations of previously rewarded locations and places that had not been visited recently, indicating a role in memory storage rather than in directly guiding subsequent behavior.

SeminarNeuroscienceRecording

The role of high- and low-level factors in smooth pursuit of predictable and random motions

Eileen Kowler
Rutgers
Oct 18, 2021

Smooth pursuit eye movements are among our most intriguing motor behaviors. They are able to keep the line of sight on smoothly moving targets with little or no overt effort or deliberate planning, and they can respond quickly and accurately to changes in the trajectory of motion of targets. Nevertheless, despite these seeming automatic characteristics, pursuit is highly sensitive to high-level factors, such as the choices made about attention, or beliefs about the direction of upcoming motion. Investigators have struggled for decades with the problem of incorporating both high- and low-level processes into a single coherent model. This talk will present an overview of the current state of efforts to incorporate high- and low-level influences, as well as new observations that add to our understanding of both types of influences. These observations (in contrast to much of the literature) focus on the directional properties of pursuit. Studies will be presented that show: (1) the direction of smooth pursuit made to pursue fields of noisy random dots depends on the relative reliability of the sensory signal and the expected motion direction; (2) smooth pursuit shows predictive responses that depend on the interpretation of cues that signal an impending collision; and (3) smooth pursuit during a change in target direction displays kinematic properties consistent with the well-known two-thirds power law. Implications for incorporating high- and low-level factors into the same framework will be discussed.

SeminarNeuroscienceRecording

Measuring relevant features of the social and physical environment with imagery

Emily Muller
Imperial College London
Oct 11, 2021

The efficacy of images to create quantitative measures of urban perception has been explored in psychology, social science, urban planning and architecture over the last 50 years. The ability to scale these measurements has become possible only in the last decade, due to increased urban surveillance in the form of street view and satellite imagery, and the accessibility of such data. This talk will present a series of projects which make use of imagery and CNNs to predict, measure and interpret the social and physical environments of our cities.

SeminarNeuroscience

Using extra-hippocampal cognitive maps for goal-directed spatial navigation

Hiroshi Ito
Max Planck Institute for Brain Research
Jul 6, 2021

Goal-directed navigation requires precise estimates of spatial relationships between current position and future goal, as well as planning of an associated route or action. While neurons in the hippocampal formation can represent the animal’s position and nearby trajectories, their role in determining the animal’s destination or action has been questioned. We thus hypothesize that brain regions outside the hippocampal formation may play complementary roles in navigation, particularly for guiding goal-directed behaviours based on the brain’s internal cognitive map. In this seminar, I will first describe a subpopulation of neurons in the retrosplenial cortex (RSC) that increase their firing when the animal approaches environmental boundaries, such as walls or edges. This boundary coding is independent of direct visual or tactile sensation but instead depends on inputs from the medial entorhinal cortex (MEC) that contains spatial tuning cells, such as grid cells or border cells. However, unlike MEC border cells, we found that RSC border cells encode environmental boundaries in a self-centred egocentric coordinate frame, which may allow an animal for efficient avoidance from approaching walls or edges during navigation. I will then discuss whether the brain can possess a precise estimate of remote target location during active environmental exploration. Such a spatial code has not been described in the hippocampal formation. However, we found that neurons in the rat orbitofrontal cortex (OFC) form spatial representations that persistently point to the animal’s subsequent goal destination throughout navigation. This destination coding emerges before navigation onset without direct sensory access to a distal goal, and are maintained via destination-specific neural ensemble dynamics. These findings together suggest key roles for extra-hippocampal regions in spatial navigation, enabling animals to choose appropriate actions toward a desired destination by avoiding possible dangers.

SeminarNeuroscienceRecording

Deciding to stop deciding: A cortical-subcortical circuit for forming and terminating a decision

Michael Shadlen
Columbia University
Jun 9, 2021

The neurobiology of decision-making is informed by neurons capable of representing information over time scales of seconds. Such neurons were initially characterized in studies of spatial working memory, motor planning (e.g., Richard Andersen lab) and spatial attention. For decision-making, such neurons emit graded spike rates, that represent the accumulated evidence for or against a choice. They establish the conduit between the formation of the decision and its completion, usually in the form of a commitment to an action, even if provisional. Indeed, many decisions appear to arise through an accumulation of noisy samples of evidence to a terminating threshold, or bound. Previous studies show that single neurons in the lateral intraparietal area (LIP) represent the accumulation of evidence when monkeys make decisions about the direction of random dot motion (RDM) and express their decision with a saccade to the neuron’s preferred target. The mechanism of termination (the bound) is elusive. LIP is interconnected with other brain regions that also display decision-related activity. Whether these areas play roles in the decision process that are similar to or fundamentally different from that of LIP is unclear. I will present new unpublished experiments that begin to resolve these issues by recording from populations of neurons simultaneously in LIP and one of its primary targets, the superior colliculus (SC), while monkeys make difficult perceptual decisions.

SeminarNeuroscienceRecording

Exploring the neural landscape of imagination and abstract spaces

Daniela Schiller
Mount Sinai
Apr 22, 2021

External cues imbued with significance can enhance the motivational state of an organism, trigger related memories and influence future planning and goal directed behavior. At the same time, internal thought and imaginings can moderate and counteract the impact of external motivational cues. The neural underpinnings of imagination have been largely opaque, due to the inherent inaccessibility of mental actions. The talk will describe studies utilizing imagination and tracking how its neural correlates bidirectionally interact with external motivational cues. Stimulus-response associative learning is only one form of memory organization. A more comprehensive and efficient organizational principal is the cognitive map. In the last part of the talk we will examine this concept in the case of abstract memories and social space. Social encounters provide opportunities to become intimate or estranged from others and to gain or lose power over them. The locations of others on the axes of power and affiliation can serve as reference points for our own position in the social space. Research is beginning to uncover the spatial-like neural representation of these social coordinates. We will discuss recent and growing evidence on utilizing the principals of the cognitive map across multiple domains, providing a systematic way of organizing memories to navigate life.

SeminarNeuroscienceRecording

Restless engrams: the origin of continually reconfiguring neural representations

Timothy O'Leary
University of Cambridge
Mar 4, 2021

During learning, populations of neurons alter their connectivity and activity patterns, enabling the brain to construct a model of the external world. Conventional wisdom holds that the durability of a such a model is reflected in the stability of neural responses and the stability of synaptic connections that form memory engrams. However, recent experimental findings have challenged this idea, revealing that neural population activity in circuits involved in sensory perception, motor planning and spatial memory continually change over time during familiar behavioural tasks. This continual change suggests significant redundancy in neural representations, with many circuit configurations providing equivalent function. I will describe recent work that explores the consequences of such redundancy for learning and for task representation. Despite large changes in neural activity, we find cortical responses in sensorimotor tasks admit a relatively stable readout at the population level. Furthermore, we find that redundancy in circuit connectivity can make a task easier to learn and compensate for deficiencies in biological learning rules. Finally, if neuronal connections are subject to an unavoidable level of turnover, the level of plasticity required to optimally maintain a memory is generally lower than the total change due to turnover itself, predicting continual reconfiguration of an engram.

SeminarNeuroscienceRecording

Thinking the Right Thoughts

Nathaniel Daw
Princeton University
Mar 3, 2021

In many learning and decision scenarios, especially sequential settings like mazes or games, it is easy to state an objective function but difficult to compute it, for instance because this can require enumerating many possible future trajectories. This, in turn, motivates a variety of more tractable approximations which then raise resource-rationality questions about whether and when an efficient agent should invest time or resources in computing decision variables more accurately. Previous work has used a simple all-or-nothing version of this reasoning as a framework to explain many phenomena of automaticity, habits, and compulsion in humans and animals. Here, I present a more finegrained theoretical analysis of deliberation, which attempts to address not just whether to deliberate vs. act, but which of many possible actions and trajectories to consider. Empirically, I first motivate and compare this account to nonlocal representations of spatial trajectories in the rodent place cell system, which are thought to be involved in planning. I also consider its implications, in humans, for variation over time and situations in subjective feelings of mental effort, boredom, and cognitive fatigue. Finally, I present results from a new study using magnetoencephalography in humans to measure subjective consideration of possible trajectories during a sequential learning task, and study its relationship to rational prioritization and to choice behavior.

SeminarNeuroscienceRecording

Geometry of Neural Computation Unifies Working Memory and Planning

John D. Murray
Yale University School of Medicine
Jun 17, 2020

Cognitive tasks typically require the integration of working memory, contextual processing, and planning to be carried out in close coordination. However, these computations are typically studied within neuroscience as independent modular processes in the brain. In this talk I will present an alternative view, that neural representations of mappings between expected stimuli and contingent goal actions can unify working memory and planning computations. We term these stored maps contingency representations. We developed a "conditional delayed logic" task capable of disambiguating the types of representations used during performance of delay tasks. Human behaviour in this task is consistent with the contingency representation, and not with traditional sensory models of working memory. In task-optimized artificial recurrent neural network models, we investigated the representational geometry and dynamical circuit mechanisms supporting contingency-based computation, and show how contingency representation explains salient observations of neuronal tuning properties in prefrontal cortex. Finally, our theory generates novel and falsifiable predictions for single-unit and population neural recordings.

SeminarNeuroscienceRecording

Deep learning for model-based RL

Timothy Lillicrap
Google Deep Mind, University College London
Jun 11, 2020

Model-based approaches to control and decision making have long held the promise of being more powerful and data efficient than model-free counterparts. However, success with model-based methods has been limited to those cases where a perfect model can be queried. The game of Go was mastered by AlphaGo using a combination of neural networks and the MCTS planning algorithm. But planning required a perfect representation of the game rules. I will describe new algorithms that instead leverage deep neural networks to learn models of the environment which are then used to plan, and update policy and value functions. These new algorithms offer hints about how brains might approach planning and acting in complex environments.

ePoster

Learning and using predictive maps for strategic planning

Peter Buttaroni, Friedemann Zenke

Bernstein Conference 2024

ePoster

Consolidation of Sequential Experience Supports Flexible Model-Based Planning

COSYNE 2022

ePoster

Subcortical modulation of cortical dynamics for motor planning: a computational framework

COSYNE 2022

ePoster

Subcortical modulation of cortical dynamics for motor planning: a computational framework

COSYNE 2022

ePoster

Forward sweeps predict human planning via model-based roll-outs but not successor-representations

Oliver Vikbladh, Evan Russek, Neil Burgess

COSYNE 2023

ePoster

Hippocampal Planning: Linking Actions and Outcomes to Guide Behavior

*Sarah Jo Venditto, Kevin Miller, Nathaniel Daw, Carlos Brody**

COSYNE 2023

ePoster

An RNN model of planning explains hippocampal replay and human behavior

Kristopher Jensen, Marcelo Mattar, Guillaume Hennequin

COSYNE 2023

ePoster

Uncertainty differentially shapes premotor and primary motor activity during movement planning

Bence Bagi, Brian M. Dekleva, Lee E. Miller, Juan A. Gallego

COSYNE 2023

ePoster

Coordinating control and planning for navigation on simplicial complex attractors

Brabeeba Wang, Nancy Lynch, Michael Halassa

COSYNE 2025

ePoster

Data-driven evaluation of interpretive framework for model-based planning

David Kastner, Peter Dayan

COSYNE 2025

ePoster

ForageWorld: RL agents in complex foraging arenas develop internal maps for navigation and planning

Ryan Badman, Riley Simmons-Edler, Felix Berg, Joshua Lunger, John Vastola, William Qian, Kanaka Rajan

COSYNE 2025

ePoster

Differential effects of working memory load during motor decision-making on planning and execution of goal-directed pointing movements

Melanie Krüger, Alexander Pleger

FENS Forum 2024

ePoster

The nucleus reuniens drives hippocampal goal‑directed trajectory sequences for route planning

Hye-A Kim, Shao-Fang Yen, Hiroshi Ito

FENS Forum 2024

ePoster

Planning-related activity in the primate prefrontal cortex and striatum during a board game

Min-Yoon Park, Mariann Oemisch, Bas Van Opheusden, Kristian Osborne, Liang Hexin, Milan Ferguson, Wei Ji Ma, Daeyeol Lee

FENS Forum 2024

ePoster

Planning horizon in motor cortex during skill learning in macaque monkeys

Nicolas Meirhaeghe, Shrabasti Jana, Lucio Condro, Frédéric Barthélémy, Sonja Grün, Alexa Riehle, Thomas Brochier

FENS Forum 2024

ePoster

Unraveling human escape planning: The impact of environmental cues on escape behavior in VR

Lukas Kornemann, Sajjad Zabbah, Yonatan Hutabarat, Dominik R. Bach

FENS Forum 2024