Portable
portable
A modular, free and open source graphical interface for visualizing and processing electrophysiological signals in real-time
Portable biosensors become more popular every year. In this context, I propose NeuriGUI, a modular and cross-platform graphical interface that connects to those biosensors for real-time processing, exploring and storing of electrophysiological signals. The NeuriGUI acts as a common entry point in brain-computer interfaces, making it possible to plug in downstream third-party applications for real-time analysis of the incoming signal. NeuriGUI is 100% free and open source.
Diagnosing dementia using Fastball neurocognitive assessment
Fastball is a novel, fast, passive biomarker of cognitive function, that uses cheap, scalable electroencephalography (EEG) technology. It is sensitive to early dementia; language, education, effort and anxiety independent and can be used in any setting including patients’ homes. It can capture a range of cognitive functions including semantic memory, recognition memory, attention and visual function. We have shown that Fastball is sensitive to cognitive dysfunction in Alzheimer’s disease and Mild Cognitive Impairment, with data collected in patients’ homes using low-cost portable EEG. We are now preparing for significant scale-up and the validation of Fastball in primary and secondary care.
Mobilefuge: A low-cost, portable, open source, 3D-printed centrifuge that can be used for purification of saliva samples for SARS-CoV2 detection
We made a low-cost centrifuge that can be useful for carrying out low-cost LAMP based detection of SARS-Cov2 virus in saliva. The 3D printed centrifuge (Mobilefuge) is portable, robust, stable, safe, easy to build and operate. The Mobilefuge doesn’t require soldering or programming skills and can be built without any specialised equipment, yet practical enough for high throughput use. More importantly, Mobilefuge can be powered from widely available USB ports, including mobile phones and associated power supplies. This allows the Mobilefuge to be used even in off-grid and resource limited settings. Website: https://www.cappa.ie/chinna-devarapu/
Structure-mapping in Human Learning
Across species, humans are uniquely able to acquire deep relational systems of the kind needed for mathematics, science, and human language. Analogical comparison processes are a major contributor to this ability. Analogical comparison engages a structure-mapping process (Gentner, 1983) that fosters learning in at least three ways: first, it highlights common relational systems and thereby promotes abstraction; second, it promotes inferences from known situations to less familiar situations; and, third, it reveals potentially important differences between examples. In short, structure-mapping is a domain-general learning process by which abstract, portable knowledge can arise from experience. It is operative from early infancy on, and is critical to the rapid learning we see in human children. Although structure-mapping processes are present pre-linguistically, their scope is greatly amplified by language. Analogical processes are instrumental in learning relational language, and the reverse is also true: relational language acts to preserve relational abstractions and render them accessible for future learning and reasoning. Although structure-mapping processes are present pre-linguistically, their scope is greatly amplified by language. Analogical processes are instrumental in learning relational language, and the reverse is also true: relational language acts to preserve relational abstractions and render them accessible for future learning and reasoning.
Portable neuroscience: using devices and apps for diagnosis and treatment of neurological disease
Scientists work in laboratories; comfortable spaces which we equip and configure to be ideal for our needs. The scientific paradigm has been adopted by clinicians, who run diagnostic tests and treatments in fully equipped hospital facilities. Yet advances in technology mean that that increasingly many functions of a laboratory can be compressed into miniature devices, or even into a smartphone app. This has the potential to be transformative for healthcare in developing nations, allowing complex tests and interventions to be made available in every village. In this talk, I will give two examples of this approach from my recent work. In the field of stroke rehabilitation, I will present basic research which we have conducted in animals over the last decade. This reveals new ways to intervene and strengthen surviving pathways, which can be deployed in cheap electronic devices to enhance functional recovery. In degenerative disease, we have used Bayesian statistical methods to improve an algorithm to measure how rapidly a subject can stop an action. We then implemented this on a portable device and on a smartphone app. The measurement obtained can act as a useful screen for Parkinson’s Disease. I conclude with an outlook for the future of this approach, and an invitation to those who would be interesting in collaborating in rolling it out to in African settings.
Portable and turn-key multimodal multiphoton microscopy for easy-to-access label-free and intravital imaging
FENS Forum 2024
Validation of portable, dry electrode-based electroencephalography device for application in brain–computer interface solutions
FENS Forum 2024