← Back

Positron Emission Tomography

Topic spotlight
TopicWorld Wide

positron emission tomography

Discover seminars, jobs, and research tagged with positron emission tomography across World Wide.
7 curated items6 Seminars1 ePoster
Updated about 4 years ago
7 items · positron emission tomography
7 results
SeminarNeuroscience

Metabolic and functional connectivity relate to distinct aspects of cognition

Katharina Voigt
Monash University
Oct 13, 2021

A major challenge of cognitive neuroscience is to understand how the brain as a network gives rise to our cognition. Simultaneous [18F]-fluorodeoxyglucose positron emission tomography functional magnetic resonance imaging (FDG-PET/fMRI) provides the opportunity to investigate brain connectivity not only via spatially distant, synchronous cerebrovascular hemodynamic responses (functional connectivity), but also glucose metabolism (metabolic connectivity). However, how these two modalities of brain connectivity differ in their relation to cognition is unknown. In this webinar, Dr Katharina Voigt will discuss recent findings demonstrating the advantage of simultaneous FDG-PET/fMRI in providing a more complete picture of the neural mechanisms underlying cognition, that calls for a combination of both modalities in future cognitive neuroscience. Dr Katharina Voigt is a Research Fellow within the Turner Institute for Brain and Mental Health, Monash University. Her research interests include systems neuroscience, simultaneous PET-MRI, and decision-making.

SeminarNeuroscience

Developing metal-based radiopharmaceuticals for imaging and therapy

Brett Paterson and Cormac Kelderman
Monash Biomedical Imaging
Jul 7, 2021

Personalised medicine will be greatly enhanced with the introduction of new radiopharmaceuticals for the diagnosis and treatment of various cancers, as well as cardiovascular disease and brain disorders. The unprecedented interest in developing theranostic radiopharmaceuticals is mainly due to the recent clinical successes of radiometal-based products including: • 177LuDOTA-TATE (trade name Lutathera, FDA approved in 2018), a peptide-based tracer that is used for treating metastatic neuroendocrine tumours • Ga 68 PSMA-11 (FDA approved in 2020), a positron emission tomography agent for imaging prostate-specific membrane antigen positive lesions in men with prostate cancer. In this webinar, Dr Brett Paterson and PhD candidate Mr Cormac Kelderman will present their research on developing the chemistry and radiochemistry to produce new radiometal-based imaging and therapy agents. They will discuss the synthesis of new molecules, the optimisation of the radiochemistry, and results from preclinical evaluations. Dr Brett Paterson is a National Imaging Facility Fellow at Monash Biomedical Imaging and academic group leader in the School of Chemistry, Monash University. His research focuses on the development of radiochemistry and new radiopharmaceuticals. Cormac Kelderman is a PhD candidate under the supervision of Dr Brett Paterson in the School of Chemistry, Monash University. His research focuses on developing new bis(thiosemicarbazone) chelators for technetium-99m SPECT imaging.

SeminarNeuroscience

Blood phosphorylated tau as biomarkers for Alzheimer’s disease

Thomas K. Karikari
University of Gothenburg
Dec 9, 2020

Alzheimer's disease (AD) is the most common cause of dementia, and its health and socioeconomic burdens are of major concern. Presently, a definite diagnosis of AD is established by examining brain tissue after death. These examinations focus on two major pathological hallmarks of AD in the brain: (i) amyloid plaques consisting of aggregated amyloid beta (Aβ) peptides and (ii) neurofibrillary tangles made of abnormally phosphorylated tau protein. In living individuals, AD diagnosis relies on two main approaches: (i) brain imaging of tau tangles and Aβ plaques using a technique called positron emission tomography (PET) and (ii) measuring biochemical changes in tau (including phosphorylated tau at threonine-181 [p-tau181]) and the Aβ42 peptide metabolized into CSF. Unlike Aβ42, CSF p-tau181 is highly specific for AD but its usability is restricted by the need of a lumbar puncture. Moreover, PET imaging is expensive and only available in specialised medical centres. Due to these shortcomings, a simple blood test that can detect disease-related changes in the brain is a high priority for AD research, clinical care and therapy testing. In this webinar, I will discuss the discovery of p-tau biomarkers in blood and the biochemistry of how these markers differ from those found in CSF. Furthermore, I will critically review the performance of blood p-tau biomarkers across the AD pathological process and how they associate with and predict Aβ and tau pathophysiological and neuropathological changes. Furthermore, I will evaluate the potential advantages, challenges and context of use of blood p-tau in clinical practice, therapeutic trials and population screening.

SeminarNeuroscience

Multimodal brain imaging to predict progression of Alzheimer’s disease

Karl Herholz
University of Manchester, Division of Neuroscience and Experimental Psychology
Dec 6, 2020

Cross-sectional and longitudinal multimodal brain imaging studies using positron emission tomography (PET) and magnetic resonance imaging (MRI) have provided detailed insight into the pathophysiological progression of Alzheimer’s disease. It starts at an asymptomatic stage with widespread gradual accumulation of beta-amyloid and spread of pathological tau deposits. Subsequently changes of functional connectivity and glucose metabolism associated with mild cognitive impairment and brain atrophy may develop. However, the rate of progression to a symptomatic stage and ultimately dementia varies considerably between individuals. Mathematical models have been developed to describe disease progression, which may be used to identify markers that determine the current stage and likely rate of progression. Both are very important to improve the efficacy of clinical trials. In this lecture, I will provide an overview on current research and future perspectives in this area.

SeminarNeuroscienceRecording

Development and Application of PET Imaging for Dementia Research

Franklin Aigbirhio
University of Cambridge
Nov 2, 2020

Molecular imaging using Positron Emission Tomography (PET) has become a major biomedical imaging technology. Its application towards characterisation of biochemical processes in disease could enable early detection and diagnosis, development of novel therapies and treatment evaluation. The technology is underpinned by the use of imaging probes radiolabelled with short-lived radioisotopes which can be specific and selective for biological targets in vivo e.g. markers for receptors, protein deposits, enzymes and metabolism. My talk will focus on the increasing development and application of PET imaging to clinical research in neurodegenerative diseases, for which it can be applied to delineate and understand the various pathological components of these disorders.

ePoster

Validation of template-based attenuation correction for in vivo quantification of the serotonin transporter using positron emission tomography

Christian Milz, Murray Bruce Reed, Matej Murgaš, Andreas Hahn, Rupert Lanzenberger

FENS Forum 2024