Predictive Dynamics
predictive dynamics
A Framework for a Conscious AI: Viewing Consciousness through a Theoretical Computer Science Lens
We examine consciousness from the perspective of theoretical computer science (TCS), a branch of mathematics concerned with understanding the underlying principles of computation and complexity, including the implications and surprising consequences of resource limitations. We propose a formal TCS model, the Conscious Turing Machine (CTM). The CTM is influenced by Alan Turing's simple yet powerful model of computation, the Turing machine (TM), and by the global workspace theory (GWT) of consciousness originated by cognitive neuroscientist Bernard Baars and further developed by him, Stanislas Dehaene, Jean-Pierre Changeux, George Mashour, and others. However, the CTM is not a standard Turing Machine. It’s not the input-output map that gives the CTM its feeling of consciousness, but what’s under the hood. Nor is the CTM a standard GW model. In addition to its architecture, what gives the CTM its feeling of consciousness is its predictive dynamics (cycles of prediction, feedback and learning), its internal multi-modal language Brainish, and certain special Long Term Memory (LTM) processors, including its Inner Speech and Model of the World processors. Phenomena generally associated with consciousness, such as blindsight, inattentional blindness, change blindness, dream creation, and free will, are considered. Explanations derived from the model draw confirmation from consistencies at a high level, well above the level of neurons, with the cognitive neuroscience literature. Reference. L. Blum and M. Blum, "A theory of consciousness from a theoretical computer science perspective: Insights from the Conscious Turing Machine," PNAS, vol. 119, no. 21, 24 May 2022. https://www.pnas.org/doi/epdf/10.1073/pnas.2115934119
Predictive dynamics improve noise robustness in a deep network model of the human auditory system
COSYNE 2023