← Back

Prefrontal Regions

Topic spotlight
TopicWorld Wide

prefrontal regions

Discover seminars, jobs, and research tagged with prefrontal regions across World Wide.
5 curated items5 Seminars
Updated over 2 years ago
5 items · prefrontal regions
5 results
SeminarNeuroscience

Distinct contributions of different anterior frontal regions to rule-guided decision-making in primates: complementary evidence from lesions, electrophysiology, and neurostimulation

Mark Buckley
Oxford University
May 4, 2023

Different prefrontal areas contribute in distinctly different ways to rule-guided behaviour in the context of a Wisconsin Card Sorting Test (WCST) analog for macaques. For example, causal evidence from circumscribed lesions in NHPs reveals that dorsolateral prefrontal cortex (dlPFC) is necessary to maintain a reinforced abstract rule in working memory, orbitofrontal cortex (OFC) is needed to rapidly update representations of rule value, and the anterior cingulate cortex (ACC) plays a key role in cognitive control and integrating information for correct and incorrect trials over recent outcomes. Moreover, recent lesion studies of frontopolar cortex (FPC) suggest it contributes to representing the relative value of unchosen alternatives, including rules. Yet we do not understand how these functional specializations relate to intrinsic neuronal activities nor the extent to which these neuronal activities differ between different prefrontal regions. After reviewing the aforementioned causal evidence I will present our new data from studies using multi-area multi-electrode recording techniques in NHPs to simultaneously record from four different prefrontal regions implicated in rule-guided behaviour. Multi-electrode micro-arrays (‘Utah arrays’) were chronically implanted in dlPFC, vlPFC, OFC, and FPC of two macaques, allowing us to simultaneously record single and multiunit activity, and local field potential (LFP), from all regions while the monkey performs the WCST analog. Rule-related neuronal activity was widespread in all areas recorded but it differed in degree and in timing between different areas. I will also present preliminary results from decoding analyses applied to rule-related neuronal activities both from individual clusters and also from population measures. These results confirm and help quantify dynamic task-related activities that differ between prefrontal regions. We also found task-related modulation of LFPs within beta and gamma bands in FPC. By combining this correlational recording methods with trial-specific causal interventions (electrical microstimulation) to FPC we could significantly enhance and impair animals performance in distinct task epochs in functionally relevant ways, further consistent with an emerging picture of regional functional specialization within a distributed framework of interacting and interconnected cortical regions.

SeminarNeuroscience

Flexible codes and loci of visual working memory

Rosanne Rademaker
Ernst Strüngmann Institute
Jul 12, 2022

Neural correlates of visual working memory have been found in early visual, parietal, and prefrontal regions. These findings have spurred fruitful debate over how and where in the brain memories might be represented. Here, I will present data from multiple experiments to demonstrate how a focus on behavioral requirements can unveil a more comprehensive understanding of the visual working memory system. Specifically, items in working memory must be maintained in a highly robust manner, resilient to interference. At the same time, storage mechanisms must preserve a high degree of flexibility in case of changing behavioral goals. Several examples will be explored in which visual memory representations are shown to undergo transformations, and even shift their cortical locus alongside their coding format based on specifics of the task.

SeminarPsychology

Flexible codes and loci of visual working memory

R.L. Rademaker
Ernst Strüngmann Institute in cooperation with the Max Planck Society
Jun 23, 2021

Neural correlates of visual working memory have been found in early visual, parietal, and prefrontal regions. These findings have spurred fruitful debate over how and where in the brain memories might be represented. Here, I will present data from multiple experiments to demonstrate how a focus on behavioral requirements can unveil a more comprehensive understanding of the visual working memory system. Specifically, items in working memory must be maintained in a highly robust manner, resilient to interference. At the same time, storage mechanisms must preserve a high degree of flexibility in case of changing behavioral goals. Several examples will be explored in which visual memory representations are shown to undergo transformations, and even shift their cortical locus alongside their coding format based on specifics of the task.

SeminarNeuroscienceRecording

TA domain-general dynamic framework for social perception

Jon Freeman
NYU
Mar 11, 2021

Initial social perceptions are often thought to reflect direct “read outs” of facial features. Instead, we outline a perspective whereby initial perceptions emerge from an automatic yet gradual process of negotiation between the perceptual cues inherent to a person (e.g., facial cues) and top-down social cognitive processes harbored within perceivers. This perspective argues that perceivers’ social-conceptual knowledge in particular can have a fundamental structuring role in perceptions, and thus how we think about social groups, emotions, or personality traits helps determine how we visually perceive them in other people. Integrative evidence from real-time behavioral paradigms (e.g., mouse-tracking), multivariate fMRI, and computational modeling will be discussed. Together, this work shows that the way we use facial cues to categorize other people into social groups (e.g., gender, race), perceive their emotion (e.g., anger), or infer their personality (e.g., trustworthiness) are all fundamentally shaped by prior social-conceptual knowledge and stereotypical assumptions. We find that these top-down impacts on initial perceptions are driven by the interplay of higher-order prefrontal regions involved in top-down predictions and lower-level fusiform regions involved in face processing. We argue that the perception of social categories, emotions, and traits from faces can all be conceived as resulting from an integrated system relying on domain-general cognitive properties. In this system, both visual and social cognitive processes are in a close exchange, and initial social perceptions emerge in part out of the structure of social-conceptual knowledge.

SeminarNeuroscienceRecording

Learning in abstract value spaces

Eric Knudsen
UC Berkeley (Joni Wallis's lab)
Jul 21, 2020

Learning the consequences our choices have as we interact with our world is critical for flexible behavior. Relational knowledge of one’s environment gives structure to otherwise-individual one-to-one stimulus-outcome mappings, providing a substrate to globally update behavioral contingencies in the face of changes in the landscape of reward. In the brain, this relational knowledge is thought to be encoded in the hippocampus (HPC) in the form of a cognitive map, while prefrontal regions, such as orbitofrontal cortex (OFC), are thought to instantiate subjective estimates of location on the map, though direct neurophysiological evidence is lacking. In this talk, I will present recent work demonstrating the causal relationship between HPC and OFC as nonhuman primates perform a reward learning task requiring them to learn and maintain knowledge of changing stimulus-outcome associations. I will then provide direct evidence that single primate hippocampal neurons represent an abstract map of the value space defined by the task. Finally, I use behavioral modeling to highlight one possible strategy by which knowledge of value space is exploited by animals to detect changes in choice-outcome mappings and proactively update their behavior in response.