Premotor Cortex
premotor cortex
Cell-type-specific plasticity shapes neocortical dynamics for motor learning
How do cortical circuits acquire new dynamics that drive learned movements? This webinar will focus on mouse premotor cortex in relation to learned lick-timing and explore high-density electrophysiology using our silicon neural probes alongside region and cell-type-specific acute genetic manipulations of proteins required for synaptic plasticity.
Identifying mechanisms of cognitive computations from spikes
Higher cortical areas carry a wide range of sensory, cognitive, and motor signals supporting complex goal-directed behavior. These signals mix in heterogeneous responses of single neurons, making it difficult to untangle underlying mechanisms. I will present two approaches for revealing interpretable circuit mechanisms from heterogeneous neural responses during cognitive tasks. First, I will show a flexible nonparametric framework for simultaneously inferring population dynamics on single trials and tuning functions of individual neurons to the latent population state. When applied to recordings from the premotor cortex during decision-making, our approach revealed that populations of neurons encoded the same dynamic variable predicting choices, and heterogeneous firing rates resulted from the diverse tuning of single neurons to this decision variable. The inferred dynamics indicated an attractor mechanism for decision computation. Second, I will show an approach for inferring an interpretable network model of a cognitive task—the latent circuit—from neural response data. We developed a theory to causally validate latent circuit mechanisms via patterned perturbations of activity and connectivity in the high-dimensional network. This work opens new possibilities for deriving testable mechanistic hypotheses from complex neural response data.
A premotor amodal clock for rhythmic tapping
We recorded and analyzed the population activity of hundreds of neurons in the medial premotor areas (MPC) of rhesus monkeys performing an isochronous tapping task guided by brief flashing stimuli or auditory tones. The animals showed a strong bias towards visual metronomes, with rhythmic tapping that was more precise and accurate than for auditory metronomes. The population dynamics in state space as well as the corresponding neural sequences shared the following properties across modalities: the circular dynamics of the neural trajectories and the neural sequences formed a regenerating loop for every produced interval, producing a relative time representation; the trajectories converged in similar state space at tapping times while the moving bumps restart at this point, resetting the beat-based clock; the tempo of the synchronized tapping was encoded by a combination of amplitude modulation and temporal scaling in the neural trajectories. In addition, the modality induced a displacement in the neural trajectories in auditory and visual subspaces without greatly altering time keeping mechanism. These results suggest that the interaction between the amodal internal representation of pulse within MPC and a modality specific external input generates a neural rhythmic clock whose dynamics define the temporal execution of tapping using auditory and visual metronomes.
Controlling the present while planning the future: How the brain learns and produces fast motor sequences
Motor sequencing is one of the fundamental components of human motor skill. In this talk I will show evidence that the fast and smooth production of motor sequences relies on the ability to plan upcoming movements while simultaneously controlling the ongoing movement. I will argue that this ability relies heavily on planning-related areas in premotor and parietal cortex.
NMC4 Short Talk: Neurocomputational mechanisms of causal inference during multisensory processing in the macaque brain
Natural perception relies inherently on inferring causal structure in the environment. However, the neural mechanisms and functional circuits that are essential for representing and updating the hidden causal structure during multisensory processing are unknown. To address this, monkeys were trained to infer the probability of a potential common source from visual and proprioceptive signals on the basis of their spatial disparity in a virtual reality system. The proprioceptive drift reported by monkeys demonstrated that they combined historical information and current multisensory signals to estimate the hidden common source and subsequently updated both the causal structure and sensory representation. Single-unit recordings in premotor and parietal cortices revealed that neural activity in premotor cortex represents the core computation of causal inference, characterizing the estimation and update of the likelihood of integrating multiple sensory inputs at a trial-by-trial level. In response to signals from premotor cortex, neural activity in parietal cortex also represents the causal structure and further dynamically updates the sensory representation to maintain consistency with the causal inference structure. Thus, our results indicate how premotor cortex integrates historical information and sensory inputs to infer hidden variables and selectively updates sensory representations in parietal cortex to support behavior. This dynamic loop of frontal-parietal interactions in the causal inference framework may provide the neural mechanism to answer long-standing questions regarding how neural circuits represent hidden structures for body-awareness and agency.
Bimodal multistability during perceptual detection in the ventral premotor cortex
Bernstein Conference 2024
Neural Representation of Hand Gestures in Human Premotor Cortex
COSYNE 2022
Neural Representation of Hand Gestures in Human Premotor Cortex
COSYNE 2022
Distinct neural dynamics in prefrontal and premotor cortex during decision-making
COSYNE 2023
Ranking and serial thinking: evidence of a geometrical solution in premotor cortex
COSYNE 2023
Emergence of robust persistent activity in premotor cortex across learning
COSYNE 2025
Dynamics of intrinsic timescales across cortical layers in the macaque motor and premotor cortex
FENS Forum 2024
The interplay between low and high local field potential oscillations in the premotor cortex of monkey reflects the decision processed during a transitive inference task
FENS Forum 2024
Local field potentials in macaque premotor cortex encode the strength of inter-individual motor coordination during joint action
FENS Forum 2024
Mapping functional neuronal ensembles in premotor cortex during complex, goal-directed behaviour
FENS Forum 2024
The neuronal trace of temporal credit assignment in premotor cortex
FENS Forum 2024
Reward expectation modulates neuronal dynamics and network organization in premotor cortex
FENS Forum 2024