Processing Time
processing time
Connecting performance benefits on visual tasks to neural mechanisms using convolutional neural networks
Behavioral studies have demonstrated that certain task features reliably enhance classification performance for challenging visual stimuli. These include extended image presentation time and the valid cueing of attention. Here, I will show how convolutional neural networks can be used as a model of the visual system that connects neural activity changes with such performance changes. Specifically, I will discuss how different anatomical forms of recurrence can account for better classification of noisy and degraded images with extended processing time. I will then show how experimentally-observed neural activity changes associated with feature attention lead to observed performance changes on detection tasks. I will also discuss the implications these results have for how we identify the neural mechanisms and architectures important for behavior.
Computation in the neuronal systems close to the critical point
It was long hypothesized that natural systems might take advantage of the extended temporal and spatial correlations close to the critical point to improve their computational capabilities. However, on the other side, different distances to criticality were inferred from the recordings of nervous systems. In my talk, I discuss how including additional constraints on the processing time can shift the optimal operating point of the recurrent networks. Moreover, the data from the visual cortex of the monkeys during the attentional task indicate that they flexibly change the closeness to the critical point of the local activity. Overall it suggests that, as we would expect from common sense, the optimal state depends on the task at hand, and the brain adapts to it in a local and fast manner.