Professor
Professor
N/A
The Department of Engineering Mathematics at the University of Bristol is seeking an outstanding candidate to fill the role of Professor in Artificial Intelligence. You will have the opportunity to provide visionary leadership to the department and its staff, students, & partners, helping to strengthen and further develop our already impressive research and teaching programs in AI. Our Intelligent Systems Group supports the Faculty of Engineering's AI/Data Science Theme, fostering an inclusive environment for all.
Odelia
The Department of Computer Science at University of Miami is inviting applications for tenure-track or tenure eligible faculty positions at levels of Associate Professor and Professor. The successful candidates must conduct research in Data Science, including areas such as Machine Learning, Deep Learning, Computer Vision, Cognitive Cybersecurity, Blockchain, Real-time Analytics, Streaming Analytics, Cyber-analytics, and Edge Computing, and are expected to develop/maintain an internationally recognized research program. The selected candidate will be expected to teach classes at the undergraduate and graduate levels. The faculty in these positions will be housed primarily in the Department of Computer Science and will have responsibilities in the Institute for Data Science and Computing (IDSC).
Frank
Multiple open professor positions at the technical University of Applied Sciences Würzburg-Schweinfurt in Computer Vision, Reinforcement Learning, Dynamical Systems
Sarath Chandar
Open tenure track professor position in Machine Learning in the Department of Computer and Software Engineering at Polytechnique Montreal, the engineering school affiliated with the University of Montreal. Suitable candidates will be nominated to become affiliated with Mila (Quebec AI Institute). Outstanding candidates specializing in core machine learning may be recommended to receive a Canada CIFAR AI Chair, contingent upon chair availability.
Bart de Boer
The artificial intelligence lab of the Vrije Universiteit Brussel (Brussels, Belgium) is looking for candidates for a full-time professor position.
Computational bio-imaging via inverse scattering
Optical imaging is a major research tool in the basic sciences, and is the only imaging modality that routinely enables non-ionized imaging with subcellular spatial resolutions and high imaging speeds. In biological imaging applications, however, optical imaging is limited by tissue scattering to short imaging depths. This prevents large-scale bio-imaging by allowing visualization of only the outer superficial layers of an organism, or specific components isolated from within the organism and prepared in-vitro.
Astrocytes: From Metabolism to Cognition
Different brain cell types exhibit distinct metabolic signatures that link energy economy to cellular function. Astrocytes and neurons, for instance, diverge dramatically in their reliance on glycolysis versus oxidative phosphorylation, underscoring that metabolic fuel efficiency is not uniform across cell types. A key factor shaping this divergence is the structural organization of the mitochondrial respiratory chain into supercomplexes. Specifically, complexes I (CI) and III (CIII) form a CI–CIII supercomplex, but the degree of this assembly varies by cell type. In neurons, CI is predominantly integrated into supercomplexes, resulting in highly efficient mitochondrial respiration and minimal reactive oxygen species (ROS) generation. Conversely, in astrocytes, a larger fraction of CI remains unassembled, freely existing apart from CIII, leading to reduced respiratory efficiency and elevated mitochondrial ROS production. Despite this apparent inefficiency, astrocytes boast a highly adaptable metabolism capable of responding to diverse stressors. Their looser CI–CIII organization allows for flexible ROS signaling, which activates antioxidant programs via transcription factors like Nrf2. This modular architecture enables astrocytes not only to balance energy production but also to support neuronal health and influence complex organismal behaviors.
“Development and application of gaze control models for active perception”
Gaze shifts in humans serve to direct high-resolution vision provided by the fovea towards areas in the environment. Gaze can be considered a proxy for attention or indicator of the relative importance of different parts of the environment. In this talk, we discuss the development of generative models of human gaze in response to visual input. We discuss how such models can be learned, both using supervised learning and using implicit feedback as an agent interacts with the environment, the latter being more plausible in biological agents. We also discuss two ways such models can be used. First, they can be used to improve the performance of artificial autonomous systems, in applications such as autonomous navigation. Second, because these models are contingent on the human’s task, goals, and/or state in the context of the environment, observations of gaze can be used to infer information about user intent. This information can be used to improve human-machine and human robot interaction, by making interfaces more anticipative. We discuss example applications in gaze-typing, robotic tele-operation and human-robot interaction.
Open Hardware Microfluidics
What’s the point of having scientific and technological innovations when only a few can benefit from them? How can we make science more inclusive? Those questions are always in the back of my mind when we perform research in our laboratory, and we have a strong focus on the scientific accessibility of our developed methods from microfabrication to sensor development.
Astrocytes release glutamate by regulated exocytosis in health and disease
Astrocytes release glutamate by regulated exocytosis in health and disease Vladimir Parpura, International Translational Neuroscience Research Institute, Zhejiang Chinese Medical University, Hangzhou, P.R. China Parpura will present you with the evidence that astrocytes, a subtype of glial cells in the brain, can exocytotically release the neurotransmitter glutamate and how this release is regulated. Spatiotemporal characteristic of vesicular fusion that underlie glutamate release in astrocytes will be discussed. He will also present data on a translational project in which this release pathway can be targeted for the treatment of glioblastoma, the deadliest brain cancer.
Examining dexterous motor control in children born with a below elbow deficiency
Pharmacological exploitation of neurotrophins and their receptors to develop novel therapeutic approaches against neurodegenerative diseases and brain trauma
Neurotrophins (NGF, BDNF, NT-3) are endogenous growth factors that exert neuroprotective effects by preventing neuronal death and promoting neurogenesis. They act by binding to their respective high-affinity, pro-survival receptors TrkA, TrkB or TrkC, as well as to p75NTR death receptor. While these molecules have been shown to significantly slow or prevent neurodegeneration, their reduced bioavailability and inability to penetrate the blood-brain-barrier limit their use as potential therapeutics. To bypass these limitations, our research team has developed and patented small-sized, lipophilic compounds which selectively resemble neurotrophins’ effects, presenting preferable pharmacological properties and promoting neuroprotection and repair against neurodegeneration. In addition, the combination of these molecules with 3D cultured human neuronal cells, and their targeted delivery in the brain ventricles through soft robotic systems, could offer novel therapeutic approaches against neurodegenerative diseases and brain trauma.
Spatio-temporal Regulation of Gene Expression in Neurons: Insights from Imaging mRNAs Live in Action
Learning Representations of Complex Meaning in the Human Brain
Brain Emulation Challenge Workshop
Brain Emulation Challenge workshop will tackle cutting-edge topics such as ground-truthing for validation, leveraging artificial datasets generated from virtual brain tissue, and the transformative potential of virtual brain platforms, such as applied to the forthcoming Brain Emulation Challenge.
Brain Emulation Challenge Workshop
Brain Emulation Challenge workshop will tackle cutting-edge topics such as ground-truthing for validation, leveraging artificial datasets generated from virtual brain tissue, and the transformative potential of virtual brain platforms, such as applied to the forthcoming Brain Emulation Challenge.
Beyond Homogeneity: Characterizing Brain Disorder Heterogeneity through EEG and Normative Modeling
Electroencephalography (EEG) has been thoroughly studied for decades in psychiatry research. Yet its integration into clinical practice as a diagnostic/prognostic tool remains unachieved. We hypothesize that a key reason is the underlying patient's heterogeneity, overlooked in psychiatric EEG research relying on a case-control approach. We combine HD-EEG with normative modeling to quantify this heterogeneity using two well-established and extensively investigated EEG characteristics -spectral power and functional connectivity- across a cohort of 1674 patients with attention-deficit/hyperactivity disorder, autism spectrum disorder, learning disorder, or anxiety, and 560 matched controls. Normative models showed that deviations from population norms among patients were highly heterogeneous and frequency-dependent. Deviation spatial overlap across patients did not exceed 40% and 24% for spectral and connectivity, respectively. Considering individual deviations in patients has significantly enhanced comparative analysis, and the identification of patient-specific markers has demonstrated a correlation with clinical assessments, representing a crucial step towards attaining precision psychiatry through EEG.
Optogenetic control of Nodal signaling patterns
Embryos issue instructions to their cells in the form of patterns of signaling activity. Within these patterns, the distribution of signaling in time and space directs the fate of embryonic cells. Tools to perturb developmental signaling with high resolution in space and time can help reveal how these patterns are decoded to make appropriate fate decisions. In this talk, I will present new optogenetic reagents and an experimental pipeline for creating designer Nodal signaling patterns in live zebrafish embryos. Our improved optoNodal reagents eliminate dark activity and improve response kinetics, without sacrificing dynamic range. We adapted an ultra-widefield microscopy platform for parallel light patterning in up to 36 embryos and demonstrated precise spatial control over Nodal signaling activity and downstream gene expression. Using this system, we demonstrate that patterned Nodal activation can initiate specification and internalization movements of endodermal precursors. Further, we used patterned illumination to generate synthetic signaling patterns in Nodal signaling mutants, rescuing several characteristic developmental defects. This study establishes an experimental toolkit for systematic exploration of Nodal signaling patterns in live embryos.
Toward globally accessible neuroimaging: Building the OSI2ONE MRI Scanner in Paraguay
The Open Source Imaging Initiative has recently released a fully open source low field MRI scanner called the OSI2ONE. We are currently building this system at the Universidad Paraguayo Alemana in Asuncion, Paraguay for a neuroimaging project at a clinic in Bolivia. I will discuss the process of construction, important considerations before you build, and future work planned with this device.
Evolution of convulsive therapy from electroconvulsive therapy to Magnetic Seizure Therapy; Interventional Neuropsychiatry
In April, we will host Nolan Williams and Mustafa Husain. Be prepared to embark on a journey from early brain stimulation with ECT to state-of-the art TMS protocols and magnetic seizure therapy! The talks will be held on Thursday, April 25th at noon ET / 6PM CET. Nolan Williams, MD, is an associate professor of Psychiatry and Behavioral Science at Stanford University. He developed the SAINT protocol, which is the first FDA-cleared non-invasive, rapid-acting neuromodulation treatment for treatment-resistant depression. Mustafa Husain, MD, is an adjunct professor of Psychiatry and Behavioral Sciences at Duke University and a professor of Psychiatry and Neurology at UT Southwestern Medical Center, Dallas. He will tell us about “Evolution of convulsive therapy from electroconvulsive therapy to Magnetic Seizure Therapy”. As always, we will also get a glimpse at the “Person behind the science”. Please register va talks.stimulatingbrains.org to receive the (free) Zoom link, subscribe to our newsletter, or follow us on Twitter/X for further updates!
Imaging the subcortex; Microstructural and connectivity correlates of outcome variability in functional neurosurgery for movement disorders
We are very much looking forward to host Francisca Ferreira and Birte Forstmann on December 14th, 2023, at noon ET / 6PM CET. Francisca Ferreira is a PhD student and Neurosurgery trainee at the University College of London Queen Square Institute of Neurology and a Royal College of Surgeons “Emerging Leaders” program laureate. Her presentation title will be: “Microstructural and connectivity correlates of outcome variability in functional neurosurgery for movement disorders”. Birte Forstmann, PhD, is the Director of the Amsterdam Brain and Cognition Center, a Professor of Cognitive Neuroscience at the University of Amsterdam, and a Professor by Special Appointment of Neuroscientific Testing of Psychological Models at the University of Leiden. Besides her scientific presentation (“Imaging the human subcortex”), she will give us a glimpse at the “Person behind the science”. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!
Wildlife, Warriors and Women: Large Carnivore Conservation in Tanzania and Beyond
Professor Amy Dickman established is the joint CEO of Lion Landscapes, which works to help conserve wildlife in some of the most important biodiversity areas of Africa. These areas include some of the most important areas in the world for big cats, but also have an extremely high level of lion killing, as lions and other carnivores impose high costs on poverty-stricken local people. Amy and her team are working with local communities to reduce carnivore attacks, providing villagers with real benefits from carnivore presence, engaging warriors in conservation and training the next generation of local conservation leaders. It has been a challenging endeavour, given the remote location and secretive and hostile nature of the tribe responsible for most lion-killing. In her talk, Amy will discuss the significance of this project, the difficulties of working in an area where witchcraft and mythology abound, and the conservation successes that are already emerging from this important work.
From primate anatomy to human neuroimaging: insights into the circuits underlying psychiatric disease and neuromodulation; Large-scale imaging of neural circuits: towards a microscopic human connectome
On Thursday, October 26th, we will host Anastasia Yendiki and Suzanne Haber. Anastasia Yendiki, PhD, is an Associate Professor in Radiology at the Harvard Medical School and an Associate Investigator at the Massachusetts General Hospital and Athinoula A. Martinos Center. Suzanne Haber, PhD, is a Professor at the University of Rochester and runs a lab at McLean hospital at Harvard Medical School in Boston. She has received numerous awards for her work on neuroanatomy. Beside her scientific presentation, she will give us a glimpse at the “Person behind the science”. The talks will be followed by a shared discussion. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!
Quality of life after DBS; Non-motor effects of DBS and quality of life
It’s our pleasure to announce that we will host Haidar Dafsari and Günther Deuschl on September 28th at noon ET / 6PM CET. Haidar Dafsari, MD, is a researcher and lecturer at the University Hospital Cologne. Günther Deuschl, MD, PhD, is a professor at Kiel University. He was president of the International Movement Disorders Society (MDS) from 2011-2013, Editor in Chief of the journal Movement Disorders and has been awarded numerous high-class awards. Beside his scientific presentation, he will give us a glimpse at the “Person behind the science”.The talks will be followed by a shared discussion. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!
From the guts to the brain through adaptive immunity in the prevention of Alzheimer’ disease
Dr. Pasinetti is the Saunders Family Chair and Professor of Neurology at Icahn School of medicine at Mount Sinai, New York. His studies allowed him to develop novel therapeutic approaches through investigation of preventable risk factors including mood disorders in the promotion of resilience against neurodegenerative disorder. In his presentation Dr. Pasinetti will discuss novel concepts about the gut-brain axis in mechanisms associated to peripheral adaptive immunity as therapeutic targets to mitigate the onset and the progression of Alzheimer’s disease and other form of dementia.
Adaptive deep brain stimulation to treat gait disorders in Parkinson's disease; Personalized chronic adaptive deep brain stimulation outperforms conventional stimulation in Parkinson's disease
On Friday, August 31st we will host Stephanie Cernera & Doris Wang! Stephanie Cernera, PhD, is a postdoctoral research fellow in the Starr lab at University of California San Francisco. She will tell us about “Personalized chronic adaptive deep brain stimulation outperforms conventional stimulation in Parkinson’s Disease”. Doris Wang, MD, PhD, is a neurosurgeon and assistant professor at the University of California San Francisco. Apart from her scientific presentation about “Adaptive Deep Brain Stimulation to Treat Gait Disorders in Parkinson’s Disease”, she will give us a glimpse at the “Person behind the science”. The talks will be followed by a shared discussion. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!
Freeze or flee ? New insights from rodent models of autism
Individuals afflicted with certain types of autism spectrum disorder often exhibit impaired cognitive function alongside enhanced emotional symptoms and mood lability. However, current understanding of the pathogenesis of autism and intellectual disabilities is based primarily on studies in the hippocampus and cortex, brain areas involved in cognitive function. But, these disorders are also associated with strong emotional symptoms, which are likely to involve changes in the amygdala and other brain areas. In this talk I will highlight these issues by presenting analyses in rat models of ASD/ID lacking Nlgn3 and Frm1 (causing Fragile X Syndrome). In addition to identifying new circuit and cellular alterations underlying divergent patterns of fear expression, these findings also suggest novel therapeutic strategies.
Auditory input to the basal ganglia; Deep brain stimulation and action-stopping: A cognitive neuroscience perspective on the contributions of fronto-basal ganglia circuits to inhibitory control
On Thursday, May 25th we will host Darcy Diesburg and Mark Richardson. Darcy Diesburg, PhD, is a post-doctoral research fellow at Brown University. She will tell us about “Deep brain stimulation and action-stopping: A cognitive neuroscience perspective on the contributions of fronto-basal ganglia circuits to inhibitory control”. Mark Richardson, MD, PhD, is the Director of Functional Neurosurgery at the Massachusetts General Hospital, Charles Pappas Associate Professor of Neurosciences at Harvard Medical School and Visiting Associate Professor of Brain and Cognitive Sciences at MIT. Beside his scientific presentation on “Auditory input to the basal ganglia”, he will give us a glimpse at the “Person behind the science”. The talks will be followed by a shared discussion. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!
My evolution in invasive human neurophysiology: From basal ganglia single units to chronic electrocorticography; Therapies orchestrated by patients' own rhythms
On Thursday, April 27th, we will host Hayriye Cagnan and Philip A. Starr. Hayriye Cagnan, PhD, is an associate professor at the MRC Brain Network Dynamics Unit and University of Oxford. She will tell us about “Therapies orchestrated by patients’ own rhythms”. Philip A. Starr, MD, PhD, is a neurosurgeon and professor of Neurological Surgery at the University of California San Francisco. Besides his scientific presentation on “My evolution in invasive human neurophysiology: from basal ganglia single units to chronic electrocorticography”, he will give us a glimpse at the person behind the science. The talks will be followed by a shared discussion. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!
Causal Symptom Network Mapping Based on Lesions and Brain Stimulation; Converging Evidence about a Depression Circuit Using Causal Sources of Information
It’s our pleasure to announce that we will host Shan Siddiqi and Michael D. Fox on Thursday, March 30th at noon ET / 6PM CET. Shan Siddiqi, MD, is an Assistant Professor of Psychiatry at Harvard Medical School and the director of Psychiatric Neuromodulation Research at the Brigham and Women’s Hospital. Michael D. Fox, MD, PhD, is an Associate Professor of Neurology at Harvard Medical School and the founding director of the Center for Brain Circuit Therapeutics at the Brigham and Women’s Hospital. The talks will be followed by a shared discussion. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!
Beta oscillations in the basal ganglia: Past, Present and Future; Oscillatory signatures of motor symptoms across movement disorders
On Wednesday, January 25th, at noon ET / 6PM CET, we will host Roxanne Lofredi and Hagai Bergman. Roxanne Lofredi, MD, is a research fellow in the Movement Disorders and Neuromodulation Unit at Charité Universitätsmedizin Berlin. Hagai Bergman, MD, PhD, is a Professor of Physiology in the Edmond and Lily Safra Center for Brain Research and Faculty of Medicine at the Hebrew University of Jerusalem, and is Simone and Bernard Guttman Chair in Brain Research. Beside his scientific presentation on “Beta oscillations in the basal ganglia: Past, Present and Future”, he will also give us a glimpse at the “Person behind the science”. The talks will be followed by a shared discussion. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!
How can we shift research culture to drive Credibility in Neuroscience?
This webinar will demonstrate changes that are already happening at individual, institutional and funder level to shift research culture toward supporting credible research, and will allow attendees working in neuroscience to ask further questions to our speakers. Our panel of speakers, chaired by Ana Dorrego-Rivas: Emily Farran, Professor in Developmental Psychology and Academic Lead Research Culture and Integrity at the University of Surrey Rosa Sancho, Head of Research at Alzheimer's Research UK Sepideh Keshavarzi, Senior Research Fellow at the Sainsbury Wellcome Centre
Bridging the gap from research to clinical decision making in epilepsy neuromodulation; How to become an integral part of the functional neurosurgery team as a radiologist
On Wednesday, November 30th, at noon ET / 6PM CET, we will host Alexandre Boutet and Erik H. Middlebrooks. Alexandre Boutet, MD, PhD, is a neuroradiology fellow at the University of Toronto, and will tell us about “How to become an integral part of the functional neurosurgery team as a radiologist”. Erik H. Middlebrooks, MD, is a Professor and Consultant of Neuroradiology and Neurosurgery and the Neuroradiology Program Director at Mayo Clinic. Beside his scientific presentation about “Bridging the Gap from Research to Clinical Decision Making in Epilepsy Neuromodulation”, he will also give us a glimpse at the “Person behind the science”. The talks will be followed by a shared discussion. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!
Neurosurgery for Mental Disorders: Challenging Mindsets; Combining Neuroimaging and Neurophysiology in Parkinson’s Disease
On Wednesday, October 26th, at noon ET / 6PM CET, we will host Kara Johnson, PhD, and Ludvic Zrinzo, MD PhD, for the inaugural session of our newly conceived talk series format entitled "Stimulating Brains". Kara A. Johnson, a postdoctoral fellow in Dr. Coralie de Hemptinne’s lab at the University of Florida, will present her work on “Combining imaging and neurophysiology in Parkinson’s disease”. Ludvic Zrinzo, Professor of functional neurosurgery and head of the University College London functional neurosurgery unit, will give us a glimpse at the “Person behind the science”, and give a talk on “Neurosurgery for mental disorders: challenging mindsets”. The talks will be followed by a shared discussion. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!
The glymphatic system in motor neurone disease
Neurodegenerative diseases are chronic and inexorable conditions characterised by the presence of insoluble aggregates of abnormally ubiquinated and phosphorylated proteins. Recent evidence also suggests that protein misfolding can propagate throughout the body in a prion-like fashion via the interstitial or cerebrospinal fluids (CSF). As protein aggregation occurs well before the onset of brain damage and symptoms, new biomarkers sensitive to early pathology, together with therapeutic strategies that include eliminating seed proteins and blocking cell-to-cell spread, are of vital importance. The glymphatic system, which facilitates the continuous exchange of CSF and interstitial fluid to clear the brain of waste, presents as a potential biomarker of disease severity, therapeutic target, and drug delivery system. In this webinar, Associate Professor David Wright from the Department of Neuroscience, Monash University, will outline recent advances in using MRI to investigate the glymphatic system. He will also present some of his lab’s recent work investigating glymphatic clearance in preclinical models of motor neurone disease. Associate Professor David Wright is an NHMRC Emerging Leadership Fellow and the Director of Preclinical Imaging in the Department of Neuroscience, Monash University and the Alfred Research Alliance, Alfred Health. His research encompasses the development, application and analysis of advanced magnetic resonance imaging techniques for the study of disease, with a particular emphasis on neurodegenerative disorders. Although less than three years post PhD, he has published over 60 peer-reviewed journal articles in leading neuroscience journals such as Nature Medicine, Brain, and Cerebral Cortex.
Using eye tracking to investigate neural circuits in health and disease
The 15th David Smith Lecture in Anatomical Neuropharmacology: Professor Tim Bliss, "Memories of long term potentiation
The David Smith Lectures in Anatomical Neuropharmacology, Part of the 'Pharmacology, Anatomical Neuropharmacology and Drug Discovery Seminars Series', Department of Pharmacology, University of Oxford. The 15th David Smith Award Lecture in Anatomical Neuropharmacology will be delivered by Professor Tim Bliss, Visiting Professor at UCL and the Frontier Institutes of Science and Technology, Xi’an Jiaotong University, China, and is hosted by Professor Nigel Emptage. This award lecture was set up to celebrate the vision of Professor A David Smith, namely, that explanations of the action of drugs on the brain requires the definition of neuronal circuits, the location and interactions of molecules. Tim Bliss gained his PhD at McGill University in Canada. He joined the MRC National Institute for Medical Research in Mill Hill, London in 1967, where he remained throughout his career. His work with Terje Lømo in the late 1960’s established the phenomenon of long-term potentiation (LTP) as the dominant synaptic model of how the mammalian brain stores memories. He was elected as a Fellow of the Royal Society in 1994 and is a founding fellow of the Academy of Medical Sciences. He shared the Bristol Myers Squibb award for Neuroscience with Eric Kandel in 1991, the Ipsen Prize for Neural Plasticity with Richard Morris and Yadin Dudai in 2013. In May 2012 he gave the annual Croonian Lecture at the Royal Society on ‘The Mechanics of Memory’. In 2016 Tim, with Graham Collingridge and Richard Morris shared the Brain Prize, one of the world's most coveted science prizes. Abstract: In 1966 there appeared in Acta Physiologica Scandinavica an abstract of a talk given by Terje Lømo, a PhD student in Per Andersen’s laboratory at the University of Oslo. In it Lømo described the long-lasting potentiation of synaptic responses in the dentate gyrus of the anaesthetised rabbit that followed repeated episodes of 10-20Hz stimulation of the perforant path. Thus, heralded and almost entirely unnoticed, one of the most consequential discoveries of 20th century neuroscience was ushered into the world. Two years later I arrived in Oslo as a visiting post-doc from the National Institute for Medical Research in Mill Hill, London. In this talk I recall the events that led us to embark on a systematic reinvestigation of the phenomenon now known as long-term potentiation (LTP) and will then go on to describe the discoveries and controversies that enlivened the early decades of research into synaptic plasticity in the mammalian brain. I will end with an observer’s view of the current state of research in the field, and what we might expect from it in the future.
Growing a world-class precision medicine industry
Monash Biomedical Imaging is part of the new $71.2 million Australian Precision Medicine Enterprise (APME) facility, which will deliver large-scale development and manufacturing of precision medicines and theranostic radiopharmaceuticals for industry and research. A key feature of the APME project is a high-energy cyclotron with multiple production clean rooms, which will be located on the Monash Biomedical Imaging (MBI) site in Clayton. This strategic co-location will facilitate radiochemistry, PET and SPECT research and clinical use of theranostic (therapeutic and diagnostic) radioisotopes produced on-site. In this webinar, MBI’s Professor Gary Egan and Dr Maggie Aulsebrook will explain how the APME will secure Australia’s supply of critical radiopharmaceuticals, build a globally competitive Australian manufacturing hub, and train scientists and engineers for the Australian workforce. They will cover the APME’s state-of-the-art 30 MeV and 18-24 MeV cyclotrons and radiochemistry facilities, as well as the services that will be accessible to students, scientists, clinical researchers, and pharmaceutical companies in Australia and around the world. The APME is a collaboration between Monash University, Global Medical Solutions Australia, and Telix Pharmaceuticals. Professor Gary Egan is Director of Monash Biomedical Imaging, Director of the ARC Centre of Excellence for Integrative Brain Function and a Distinguished Professor at the Turner Institute for Brain and Mental Health, Monash University. He is also lead investigator of the Victorian Biomedical Imaging Capability, and Deputy Director of the Australian National Imaging Facility. Dr Maggie Aulsebrook obtained her PhD in Chemistry at Monash University and specialises in the development and clinical translation of radiopharmaceuticals. She has led the development of several investigational radiopharmaceuticals for first-in-human application. Maggie leads the Radiochemistry Platform at Monash Biomedical Imaging.
Growing Up in Academia with Emily Cross
Brain and Mind: Who is the Puppet and who the Puppeteer?
If the mind controls the brain, then there is free will and its corollaries, dignity and responsibility. You are king in your skull-sized kingdom and the architect of your destiny. If, on the other hand, the brain controls the mind, an incendiary conclusion follows: There can be no free will, no praise, no punishment and no purgatory. In this webinar, Professor George Paxinos will discuss his highly respected work on the construction of human and experimental animal brain atlases. He has discovered 94 brain regions, 64 homologies and published 58 books. His first book, The Rat Brain in Stereotaxic Coordinates, is the most cited publication in neuroscience and, for three decades, the third most cited book in science. Professor Paxinos will also present his recently published novel, A River Divided, which was 21 years in the making. Neuroscience principles were used in the formation of charters, such as those related to the mind, soul, free will and consciousness. Environmental issues are at the heart of the novel, including the question of whether the brain is the right ‘size’ for survival. Professor Paxinos studied at Berkeley, McGill and Yale and is now Scientia Professor of Medical Sciences at Neuroscience Research Australia and The University of New South Wales in Sydney.
Mechanisms and Roles of Fast Dopamine Signaling
Dopamine is a neuromodulator that codes information on various time scales. I will discuss recent progress on the identification of fast release mechanisms for dopamine in the mouse striatum. I will present data on triggering mechanisms of dopamine release and evaluate its roles in striatal regulation. In the long-term, our work will allow for a better understanding of the mechanisms and time scales of dopamine coding in health and disease.
Charting the Proteome Landscape of Diverse Synapses In Vivo
The Synaptome Architecture of the Brain: Lifespan, disease, evolution and behavior
The overall aim of my research is to understand how the organisation of the synapse, with particular reference to the postsynaptic proteome (PSP) of excitatory synapses in the brain, informs the fundamental mechanisms of learning, memory and behaviour and how these mechanisms go awry in neurological dysfunction. The PSP indeed bears a remarkable burden of disease, with components being disrupted in disorders (synaptopathies) including schizophrenia, depression, autism and intellectual disability. Our work has been fundamental in revealing and then characterising the unprecedented complexity (>1000 highly conserved proteins) of the PSP in terms of the subsynaptic architecture of postsynaptic proteins such as PSD95 and how these proteins assemble into complexes and supercomplexes in different neurons and regions of the brain. Characterising the PSPs in multiple species, including human and mouse, has revealed differences in key sets of functionally important proteins, correlates with brain imaging and connectome data, and a differential distribution of disease-relevant proteins and pathways. Such studies have also provided important insight into synapse evolution, establishing that vertebrate behavioural complexity is a product of the evolutionary expansion in synapse proteomes that occurred ~500 million years ago. My lab has identified many mutations causing cognitive impairments in mice before they were found to cause human disorders. Our proteomic studies revealed that >130 brain diseases are caused by mutations affecting postsynaptic proteins. We uncovered mechanisms that explain the polygenic basis and age of onset of schizophrenia, with postsynaptic proteins, including PSD95 supercomplexes, carrying much of the polygenic burden. We discovered the “Genetic Lifespan Calendar”, a genomic programme controlling when genes are regulated. We showed that this could explain how schizophrenia susceptibility genes are timed to exert their effects in young adults. The Genes to Cognition programme is the largest genetic study so far undertaken into the synaptic molecular mechanisms underlying behaviour and physiology. We made important conceptual advances that inform how the repertoire of both innate and learned behaviours is built from unique combinations of postsynaptic proteins that either amplify or attenuate the behavioural response. This constitutes a key advance in understanding how the brain decodes information inherent in patterns of nerve impulses, and provides insight into why the PSP has evolved to be so complex, and consequently why the phenotypes of synaptopathies are so diverse. Our most recent work has opened a new phase, and scale, in understanding synapses with the first synaptome maps of the brain. We have developed next-generation methods (SYNMAP) that enable single-synapse resolution molecular mapping across the whole mouse brain and extensive regions of the human brain, revealing the molecular and morphological features of a billion synapses. This has already uncovered unprecedented spatiotemporal synapse diversity organised into an architecture that correlates with the structural and functional connectomes, and shown how mutations that cause cognitive disorders reorganise these synaptome maps; for example, by detecting vulnerable synapse subtypes and synapse loss in Alzheimer’s disease. This innovative synaptome mapping technology has huge potential to help characterise how the brain changes during normal development, including in specific cell types, and with degeneration, facilitating novel pathways to diagnosis and therapy.
The functional connectome across temporal scales
The view of human brain function has drastically shifted over the last decade, owing to the observation that the majority of brain activity is intrinsic rather than driven by external stimuli or cognitive demands. Specifically, all brain regions continuously communicate in spatiotemporally organized patterns that constitute the functional connectome, with consequences for cognition and behavior. In this talk, I will argue that another shift is underway, driven by new insights from synergistic interrogation of the functional connectome using different acquisition methods. The human functional connectome is typically investigated with functional magnetic resonance imaging (fMRI) that relies on the indirect hemodynamic signal, thereby emphasizing very slow connectivity across brain regions. Conversely, more recent methodological advances demonstrate that fast connectivity within the whole-brain connectome can be studied with real-time methods such as electroencephalography (EEG). Our findings show that combining fMRI with scalp or intracranial EEG in humans, especially when recorded concurrently, paints a rich picture of neural communication across the connectome. Specifically, the connectome comprises both fast, oscillation-based connectivity observable with EEG, as well as extremely slow processes best captured by fMRI. While the fast and slow processes share an important degree of spatial organization, these processes unfold in a temporally independent manner. Our observations suggest that fMRI and EEG may be envisaged as capturing distinct aspects of functional connectivity, rather than intermodal measurements of the same phenomenon. Infraslow fluctuation-based and rapid oscillation-based connectivity of various frequency bands constitute multiple dynamic trajectories through a shared state space of discrete connectome configurations. The multitude of flexible trajectories may concurrently enable functional connectivity across multiple independent sets of distributed brain regions.
Growing Up in Academia with Onur Güntürkün
There are stories of resilience, passion, braveness and determination and the one of Onur Güntürkün. He has managed to beat the odds in so many ways, from moving countries, surviving the polio, establishing a new field against the advice of a senior professor and much more, all the while keeping a positive spirit, an endless curiosity and the braveness to keep going despite adversities. Join me on Monday, February 28, 2022, 6 p.m. (CET) for a Growing Up in Academia with Onur Güntürkün.
The Brain Conference (the Guarantors of Brain)
Join the Brain Conference on 24-25 February 2022 for the opportunity to hear from neurology’s leading scientists and clinicians. The two-day virtual programme features clinical teaching talks and research presentations from expert speakers including neuroscientist Professor Gina Poe, and the winner of the 2021 Brain Prize, neurologist Professor Peter Goadsby." "Tickets for The Brain Conference 2022 cost just £30, but register with promotional code BRAINCONEM20 for a discounted rate of £25.
The Brain Conference (the Guarantors of Brain)
Join the Brain Conference on 24-25 February 2022 for the opportunity to hear from neurology’s leading scientists and clinicians. The two-day virtual programme features clinical teaching talks and research presentations from expert speakers including neuroscientist Professor Gina Poe, and the winner of the 2021 Brain Prize, neurologist Professor Peter Goadsby." "Tickets for The Brain Conference 2022 cost just £30, but register with promotional code BRAINCONEM20 for a discounted rate of £25.
The Role of Cerebrovascular Pathology in Aging and Neurodegenerative Disease Populations
Late-life cognitive impairment and dementia are heterogeneous and multifactorial conditions driven by a combination of genetic, vascular, and lifestyle-related factors. More than 75% of patients with dementia have evidence of cerebrovascular pathology at autopsy. Cerebrovascular disease lesions can be detected on structural MRI and used as biomarkers to determine the extent of cerebrovascular pathology. These biomarkers are associated with cognitive difficulties and increase the risk of dementia for the same level of neurodegenerative pathology. Given that some of the risk factors for cerebrovascular disease are potentially modifiable, identifying the role of cerebrovascular pathology in aging and neurodegenerative disease populations opens a window for prevention of cognitive decline and dementia.
Keeping your Brain in Balance: the Ups and Downs of Homeostatic Plasticity (virtual)
Our brains must generate and maintain stable activity patterns over decades of life, despite the dramatic changes in circuit connectivity and function induced by learning and experience-dependent plasticity. How do our brains acheive this balance between opposing need for plasticity and stability? Over the past two decades, we and others have uncovered a family of “homeostatic” negative feedback mechanisms that are theorized to stabilize overall brain activity while allowing specific connections to be reconfigured by experience. Here I discuss recent work in which we demonstrate that individual neocortical neurons in freely behaving animals indeed have a homeostatic activity set-point, to which they return in the face of perturbations. Intriguingly, this firing rate homeostasis is gated by sleep/wake states in a manner that depends on the direction of homeostatic regulation: upward-firing rate homeostasis occurs selectively during periods of active wake, while downward-firing rate homeostasis occurs selectively during periods of sleep, suggesting that an important function of sleep is to temporally segregate bidirectional plasticity. Finally, we show that firing rate homeostasis is compromised in an animal model of autism spectrum disorder. Together our findings suggest that loss of homeostatic plasticity in some neurological disorders may render central circuits unable to compensate for the normal perturbations induced by development and learning.
Reasoning Ability: Neural Mechanisms, Development, and Plasticity
Relational thinking, or the process of identifying and integrating relations between mental representations, is regularly invoked during reasoning. This mental capacity enables us to draw higher-order abstractions and generalize across situations and contexts, and we have argued that it should be included in the pantheon of executive functions. In this talk, I will briefly review our lab's work characterizing the roles of lateral prefrontal and parietal regions in relational thinking. I will then discuss structural and functional predictors of individual differences and developmental changes in reasoning.
New tools for monitoring and manipulating neural circuits
Dr. Looger will present updates on a variety of molecular tools for studying & manipulating neural circuits & other preparations. Topics include genetically encoded calcium indicators (including the new ultra-fast jGCaMP8 variants), neurotransmitter sensors (improved versions for following glutamate, GABA, acetylcholine, serotonin), optogenetic effectors including the new “enhanced Magnets” dimerizers, AAV serotypes for retrograde labeling & altered tropism, probes for correlative light-electron microscopy, chemical gene switches, etc. He will make all his slides freely available - so don’t worry about hurriedly taking notes; instead focus on questions and ideas for collaboration. Please bring your suggestions for molecular tools that would be transformative for the field.
Architectural Psychology with Professor David Canter
Emotions are constructed of more basic networks
It has long been assumed that certain “basic” emotions emerge from anatomically ingrained circuits. Yet growing research suggests that emotions emerge from more basic networks that comprise the brain’s basic functional architecture. In this talk, I’ll discuss evidence that human emotional experiences are associated with the co-activation of broadscale networks subserving psychological functions that are not specific to emotion.
Modulation of oligodendrocyte development and myelination by voltage-gated Ca++ channels
The oligodendrocyte generates CNS myelin, which is essential for normal nervous system function. Thus, investigating the regulatory and signaling mechanisms that control its differentiation and the production of myelin is relevant to our understanding of brain development and of adult pathologies such as multiple sclerosis. We have recently established that the activity of voltage-gated Ca++ channels is crucial for the adequate migration, proliferation and maturation of oligodendrocyte progenitor cells (OPCs). Furthermore, we have found that voltage-gated Ca++ channels that function in synaptic communication between neurons also mediate synaptic signaling between neurons and OPCs. Thus, we hypothesize that voltage-gated Ca++ channels are central components of OPC-neuronal synapses and are the principal ion channels mediating activity-dependent myelination.
Towards a More Authentic Vision of the (multi)Coding Potential of RNA
Ten of thousands of open reading frames (ORFs) are hidden within transcripts. They have eluded annotations because they are either small or within unsuspected locations. These are named alternative ORFs (altORFs) or small ORFs and have recently been highlighted by innovative proteogenomic approaches, such as our OpenProt resource, revealing their existence and implications in biological functions. Due to the absence of altORFs from annotations, pathogenic mutations within these are being ignored. I will discuss our latest progress on the re-analysis of large-scale proteomics datasets to improve our knowledge of proteomic diversity, and the functional characterization of a second protein coded by the FUS gene. Finally, I will explain the need to map the coding potential of the transcriptome using artificial intelligence rather than with conventional annotations that do not capture the full translational activity of ribosomes.
From bench to clinic – Translating fundamental neuroscience into real-life healthcare practices, and developing nationally recognised life science companies
Dr. Ryan C.N. D’Arcy is a Canadian neuroscientist, researcher, innovator and entrepreneur. Dr. D'Arcy co-founded HealthTech Connex Inc. and serves as President and Chief Scientific Officer. HealthTech Connex translates neuroscience advances into health technology breakthroughs. D'Arcy is most known for coining the term "brain vital signs" and for leading the research and development of the brain vital signs framework. Dr. D’Arcy also holds a BC Leadership Chair in Medical Technology, is a full Professor at Simon Fraser University, and a member of the DM Centre for Brain Health at the University of British Columbia. He has published more than 260 academic works, attracted more than $85 Million CAD in competitive research and innovation funding, and been recognized through numerous awards and distinctions. Please join us for an exciting virtual talk with Dr. D'Arcy who will speak on some of the current research he is involved in, how he is translating this research into real-life applications, and the development of HealthTech Connects Inc.
The circadian clock and neural circuits maintaining body fluid homeostasis
Neurons in the suprachiasmatic nucleus (SCN, the brain’s master circadian clock) display a 24 hour cycle in the their rate of action potential discharge whereby firing rates are high during the light phase and lower during the dark phase. Although it is generally agreed that this cycle of activity is a key mediator of the clock’s neural and humoral output, surprisingly little is known about how changes in clock electrical activity can mediate scheduled physiological changes at different times of day. Using opto- and chemogenetic approaches in mice we have shown that the onset of electrical activity in vasopressin releasing SCN neurons near Zeitgeber time 22 (ZT22) activates glutamatergic thirst-promoting neurons in the OVLT (organum vasculosum lamina terminalis) to promote water intake prior to sleep. This effect is mediated by activity-dependent release of vasopressin from the axon terminals of SCN neurons which acts as a neurotransmitter on OVLT neurons. More recently we found that the clock receives excitatory input from a different subset of sodium sensing neurons in the OVLT. Activation of these neurons by a systemic salt load delivered at ZT19 stimulated the electrical activity of SCN neurons which are normally silent at this time. Remarkably, this effect induced an acute reduction in non-shivering thermogenesis and body temperature, which is an adaptive response to the salt load. These findings provide information regarding the mechanisms by which the SCN promotes scheduled physiological rhythms and indicates that the clock’s output circuitry can also be recruited to mediate an unscheduled homeostatic response.
Monash Biomedical Imaging highlights from 2021 and looking ahead to 2022
Despite the challenges COVID-19 has continued to present, Monash Biomedical Imaging (MBI) has had another outstanding year in terms of publications and scientific output. In this webinar, Professor Gary Egan, Director of MBI, will present an overview of MBI’s achievements during 2021 and outline the biomedical imaging research programs and partnerships in 2022. His presentation will cover: • MBI operational and research achievements during 2021 • Biomedical imaging technology developments and research outcomes during 2021 • Linked laboratories and research teams at MBI • Progress on the development of a cyclotron and precision radiopharmaceutical facility at Clayton • Emerging research opportunities at the Monash Heart Hospital in cardiology and cardiovascular disease. Professor Gary Egan is Director of Monash Biomedical Imaging, Director of the ARC Centre of Excellence for Integrative Brain Function and a Distinguished Professor at the Turner Institute for Brain and Mental Health, Monash University. He is also lead investigator of the Victorian Biomedical Imaging Capability, and Deputy Director of the Australian National Imaging Facility. His substantive body of published work has made a significant impact on the neuroimaging and neuroscience fields. He has sustained success in obtaining significant grants to support his own research and the development of facilities to advance biomedical imaging.
Synapses, Shadows and Stress Contagion
Survival is predicated on the ability of an organism to respond to stress. The reliability of this response is ensured by a synaptic architecture that is relatively inflexible (i.e. hard-wired). Our work has shown that in naive animals, synapses on CRH neurons in the paraventricular nucleus of the hypothalamus are very reluctant to modification. If animals are stressed, however, these synapses become willing to learn. This seminar will focus on mechanisms linking acute stress to metaplastic changes at glutamate synapses, and also show how stress, and these synaptic changes can be transmitted from one individual to another.
Identification and treatment of advanced, rupture-prone plaques to reduce cardiovascular mortality
Atherosclerosis is the underlying cause of major cardiovascular events, including heart attack and stroke. The build-up of plaque in coronary arteries can be a major risk for events, but risk is significantly higher in patients with vulnerable rather than stable plaque. Diagnostic imaging of vulnerable plaque is extremely useful for both stratifying patient risk and for determining effectiveness of experimental intervention in reducing cardiovascular risk. In the preclinical setting, being able to distinguish between stable and vulnerable plaque development and pair this with biochemical measures is critical for identification of new experimental candidates. In this webinar, Professor Stephen Nicholls and Dr Kristen Bubb from the Victorian Heart Institute will discuss the benefits of being able to visualise vulnerable plaque for both clinical and preclinical research. Professor Stephen Nicholls is a clinician-researcher and the Head of the Victorian Heart Institute. He is the lead investigator on multiple large, international, cardiovascular outcomes trials. He has attracted over $100 million in direct research funding and published more than 400 peer-reviewed manuscripts. He is focused on both therapeutic intervention to reduce vascular inflammation and lipid accumulation and precision medicine approaches to prevent cardiovascular mortality. Dr Kristen Bubb is a biomedical researcher and Group Leader within the Monash Biomedicine Discovery Institute Cardiovascular Program and Victorian Heart Institute. She focuses on preclinical/translational research into mechanisms underlying vascular pathologies including atherosclerosis and endothelium-driven hypertension within specific vascular systems, including pulmonary and pregnancy-induced. She has published >30 high impact papers in leading cardiovascular journals and attracted category 1&2 funding of >$750,000.
Neural mechanisms of altered states of consciousness under psychedelics
Interest in psychedelic compounds is growing due to their remarkable potential for understanding altered neural states and their breakthrough status to treat various psychiatric disorders. However, there are major knowledge gaps regarding how psychedelics affect the brain. The Computational Neuroscience Laboratory at the Turner Institute for Brain and Mental Health, Monash University, uses multimodal neuroimaging to test hypotheses of the brain’s functional reorganisation under psychedelics, informed by the accounts of hierarchical predictive processing, using dynamic causal modelling (DCM). DCM is a generative modelling technique which allows to infer the directed connectivity among brain regions using functional brain imaging measurements. In this webinar, Associate Professor Adeel Razi and PhD candidate Devon Stoliker will showcase a series of previous and new findings of how changes to synaptic mechanisms, under the control of serotonin receptors, across the brain hierarchy influence sensory and associative brain connectivity. Understanding these neural mechanisms of subjective and therapeutic effects of psychedelics is critical for rational development of novel treatments and for the design and success of future clinical trials. Associate Professor Adeel Razi is a NHMRC Investigator Fellow and CIFAR Azrieli Global Scholar at the Turner Institute of Brain and Mental Health, Monash University. He performs cross-disciplinary research combining engineering, physics, and machine-learning. Devon Stoliker is a PhD candidate at the Turner Institute for Brain and Mental Health, Monash University. His interest in consciousness and psychiatry has led him to investigate the neural mechanisms of classic psychedelic effects in the brain.
Untitled Seminar
CrossTalk: Conversations at the Intersection of Science and Art
Anjan Chatterjee is a Professor of Neurology, Psychology, and Architecture and the founding Director of the Penn Center for Neuroaesthetics. His research explores the field of neuroaesthetics: how our brain experiences and responds to art. Lucas Kelly is a renowned visual artist, with work featured across several solo and group exhibitions, most notably in the survey of abstract painting “The Painted World” at PS1 Museum of Modern Art. As the inaugural Artist in Residence for the Penn Center for Neuroaesthetics, Lucas has collaborated with Anjan on a forthcoming exhibition, considering the emotions involved in aesthetic engagement informed by research. This event will feature a moderated conversation between Anjan and Lucas, discussing topics at the intersection of neuroscience and experience of visual art.
Predator-prey interactions: the avian visual sensory perspective
My research interests are centered on animal ecology, and more specifically include the following areas: visual ecology, behavioral ecology, and conservation biology, as well as the interactions between them. My research is question-driven. I answer my questions in a comprehensive manner, using a combination of empirical, theoretical, and comparative approaches. My model species are usually birds, but I have also worked with fish, mammals, amphibians, and insects. I was fortunate to enrich my education by attending Universities in different parts of the world. I did my undergraduate, specialized in ecology and biodiversity, at the "Universidad Nacional de Cordoba", Argentina. My Ph.D. was in animal ecology and conservation biology at the "Universidad Complutense de Madrid", Spain. My two post-docs were focused on behavioral ecology; the first one at University of Oxford (United Kingdom), and the second one at University of Minnesota (USA). I was an Assistant Professor at California State University Long Beach for almost six years. I am now a Full Professor of Biological Sciences at Purdue University.
Analyzing Retinal Disease Using Electron Microscopic Connectomics
John DowlingJohn E. Dowling received his AB and PhD from Harvard University. He taught in the Biology Department at Harvard from 1961 to 1964, first as an Instructor, then as assistant professor. In 1964 he moved to Johns Hopkins University, where he held an appointment as associate professor of Ophthalmology and Biophysics. He returned to Harvard as professor of Biology in 1971, was the Maria Moors Cabot Professor of Natural Sciences from 1971-2001, Harvard College professor from 1999-2004 and is presently the Gordon and Llura Gund Professor of Neurosciences. Dowling was chairman of the Biology Department at Harvard from 1975 to 1978 and served as associate dean of the faculty of Arts and Sciences from 1980 to 1984. He was Master of Leverett House at Harvard from 1981-1998 and currently serves as president of the Corporation of The Marine Biological Laboratory in Woods Hole. He is a Fellow of the American Academy of Arts and Sciences, a member of the National Academy of Sciences and a member of the American Philosophical Society. Awards that Dowling received include the Friedenwald Medal from the Association of Research in Ophthalmology and Vision in 1970, the Annual Award of the New England Ophthalmological Society in 1979, the Retinal Research Foundation Award for Retinal Research in 1981, an Alcon Vision Research Recognition Award in 1986, a National Eye Institute's MERIT award in 1987, the Von Sallman Prize in 1992, The Helen Keller Prize for Vision Research in 2000 and the Llura Ligget Gund Award for Lifetime Achievement and Recognition of Contribution to the Foundation Fighting Blindness in 2001. He was granted an honorary MD degree by the University of Lund (Sweden) in 1982 and an honorary Doctor of Laws degree from Dalhousie University (Canada) in 2012. Dowling's research interests have focused on the vertebrate retina as a model piece of the brain. He and his collaborators have long been interested in the functional organization of the retina, studying its synaptic organization, the electrical responses of the retinal neurons, and the mechanisms underlying neurotransmission and neuromodulation in the retina. Dowling became interested in zebrafish as a system in which one could explore the development and genetics of the vertebrate retina about 20 years ago. Part of his research team has focused on retinal development in zebrafish and the role of retinoic acid in early eye and photoreceptor development. A second group has developed behavioral tests to isolate mutations, both recessive and dominant, specific to the visual system.