Progressive Alignment
progressive alignment
Applying Structural Alignment theory to Early Verb Learning
Learning verbs is difficult and critical to learning one's native language. Children appear to benefit from seeing multiple events and comparing them to each other, and structural alignment theory provides a good theoretical framework to guide research into how preschool children may be comparing events as they learn new verbs. The talk will include 6 studies of early verb learning that make use of eye-tracking procedures as well as other behavioral (pointing) procedures, and that test key predictions from SA theory including the prediction that seeing similar examples before more varied examples helps observers learn how to compare (progressive alignment) and the prediction that when events have very low alignability with other events, that is one cue that the events should be ignored. Whether or how statistical learning may also be at work will be considered.
Implications of Vector-space models of Relational Concepts
Vector-space models are used frequently to compare similarity and dimensionality among entity concepts. What happens when we apply these models to relational concepts? What is the evidence that such models do apply to relational concepts? If we use such a model, then one implication is that maximizing surface feature variation should improve relational concept learning. For example, in STEM instruction, the effectiveness of teaching by analogy is often limited by students’ focus on superficial features of the source and target exemplars. However, in contrast to the prediction of the vector-space computational model, the strategy of progressive alignment (moving from perceptually similar to different targets) has been suggested to address this issue (Gentner & Hoyos, 2017), and human behavioral evidence has shown benefits from progressive alignment. Here I will present some preliminary data that supports the computational approach. Participants were explicitly instructed to match stimuli based on relations while perceptual similarity of stimuli varied parametrically. We found that lower perceptual similarity reduced accurate relational matching. This finding demonstrates that perceptual similarity may interfere with relational judgements, but also hints at why progressive alignment maybe effective. These are preliminary, exploratory data and I to hope receive feedback on the framework and to start a discussion in a group on the utility of vector-space models for relational concepts in general.
Children’s inference of verb meanings: Inductive, analogical and abductive inference
Children need inference in order to learn the meanings of words. They must infer the referent from the situation in which a target word is said. Furthermore, to be able to use the word in other situations, they also need to infer what other referents the word can be generalized to. As verbs refer to relations between arguments, verb learning requires relational analogical inference, something which is challenging to young children. To overcome this difficulty, young children recruit a diverse range of cues in their inference of verb meanings, including, but not limited to, syntactic cues and social and pragmatic cues as well as statistical cues. They also utilize perceptual similarity (object similarity) in progressive alignment to extract relational verb meanings and further to gain insights about relational verb meanings. However, just having a list of these cues is not useful: the cues must be selected, combined, and coordinated to produce the optimal interpretation in a particular context. This process involves abductive reasoning, similar to what scientists do to form hypotheses from a range of facts or evidence. In this talk, I discuss how children use a chain of inferences to learn meanings of verbs. I consider not only the process of analogical mapping and progressive alignment, but also how children use abductive inference to find the source of analogy and gain insights into the general principles underlying verb learning. I also present recent findings from my laboratory that show that prelinguistic human infants use a rudimentary form of abductive reasoning, which enables the first step of word learning.