Projection Neurons
projection neurons
Prefrontal top-down projections control context-dependent strategy selection
The rules governing behavior often vary with behavioral contexts. As a result, an action rewarded in one context may be discouraged in another. Animals and humans are capable of switching between behavioral strategies under different contexts and acting adaptively according to the variable rules, a flexibility that is thought to be mediated by the prefrontal cortex (PFC). However, how the PFC orchestrates the context-dependent switch of strategies remains unclear. Here we show that pathway-specific projection neurons in the medial PFC (mPFC) differentially contribute to context-instructed strategy selection. In mice trained in a decision-making task in which a previously established rule and a newly learned rule are associated with distinct contexts, the activity of mPFC neurons projecting to the dorsomedial striatum (mPFC-DMS) encodes the contexts and further represents decision strategies conforming to the old and new rules. Moreover, mPFC-DMS neuron activity is required for the context-instructed strategy selection. In contrast, the activity of mPFC neurons projecting to the ventral midline thalamus (mPFC-VMT) does not discriminate between the contexts, and represents the old rule even if mice have adopted the new one. Furthermore, these neurons act to prevent the strategy switch under the new rule. Our results suggest that mPFC-DMS neurons promote flexible strategy selection guided by contexts, whereas mPFC-VMT neurons favor fixed strategy selection by preserving old rules.
Investigating activity-dependent processes in cerebral cortex development and disease
The cerebral cortex contains an extraordinary diversity of excitatory projection neuron (PN) and inhibitory interneurons (IN), wired together to form complex circuits. Spatiotemporally coordinated execution of intrinsic molecular programs by PNs and INs and activity-dependent processes, contribute to cortical development and cortical microcircuits formation. Alterations of these delicate processes have often been associated to neurological/neurodevelopmental disorders. However, despite the groundbreaking discovery that spontaneous activity in the embryonic brain can shape regional identities of distinct cortical territories, it is still unclear whether this early activity contributes to define subtype-specific neuronal fate as well as circuit assembly. In this study, we combined in utero genetic perturbations via CRISPR/Cas9 system and pharmacological inhibition of selected ion channels with RNA-sequencing and live imaging technologies to identify the activity-regulated processes controlling the development of different cortical PN classes, their wiring and the acquisition of subtype specific features. Moreover, we generated human induced pluripotent stem cells (iPSCs) form patients affected by a severe, rare and untreatable form of developmental epileptic encephalopathy. By differentiating cortical organoids form patient-derived iPSCs we create human models of early electrical alterations for studying molecular, structural and functional consequences of the genetic mutations during cortical development. Our ultimate goal is to define the activity-conditioned processes that physiologically occur during the development of cortical circuits, to identify novel therapeutical paths to address the pathological consequences of neonatal epilepsies.
Transcriptional controls over projection neuron fate diversity
The cerebral cortex is the most evolved structure of the brain and the site for higher cognitive functions. It consists of 6 layers, each composed of specific types of neurons. Interconnectivity between cortical areas is critical for sensory integration and sensorimotor transformation. Inter-areal cortical projection neurons are located in all cortical layers and form a heterogeneous population, which send their axon across cortical areas, both within and across hemispheres. How this diversity emerges during development remains largely unknown. Here, we address this question by linking the connectome and transcriptome of developing cortical projection neurons and show distinct maturation paces in neurons with distinct projections, which correlates with the sequential development of sensory and motor functions during postnatal period.
Variability, maintenance and learning in birdsong
The songbird zebra finch is an exemplary model system in which to study trial-and-error learning, as the bird learns its single song gradually through the production of many noisy renditions. It is also a good system in which to study the maintenance of motor skills, as the adult bird actively maintains its song and retains some residual plasticity. Motor learning occurs through the association of timing within the song, represented by sparse firing in nucleus HVC, with motor output, driven by nucleus RA. Here we show through modeling that the small level of observed variability in HVC can result in a network which is more easily able to adapt to change, and is most robust to cell damage or death, than an unperturbed network. In collaboration with Carlos Lois’ lab, we also consider the effect of directly perturbing HVC through viral injection of toxins that affect the firing of projection neurons. Following these perturbations, the song is profoundly affected but is able to almost perfectly recover. We characterize the changes in song acoustics and syntax, and propose models for HVC architecture and plasticity that can account for some of the observed effects. Finally, we suggest a potential role for inputs from nucleus Uva in helping to control timing precision in HVC.
Safety in numbers: how animals use motion of others as threat or safety cues
Our work concerns the general problem of adaptive behaviour in response to predatory threats, and of the neural mechanisms underlying a choice between strategies. When faced with a threat, an animal must decide whether to freeze, reducing its chances of being noticed, or to flee to the safety of a refuge. Animals from fish to primates choose between these two alternatives when confronted by an attacking predator, a choice that largely depends on the context in which the threat occurs. Recent work has made strides identifying the pre-motor circuits, and their inputs, which control freezing behaviour in rodents, but how contextual information is integrated to guide this choice is still far from understood. The social environment is a potent contextual modulator of defensive behaviours of animals in a group. Indeed, anti-predation strategies are believed to be a major driving force for the evolution of sociality. We recently found that fruit flies in response to visual looming stimuli, simulating a large object on collision course, make rapid freeze/flee choices accompanied by lasting changes in the fly’s internal state, reflected in altered cardiac activity. In this talk, I will discuss our work on how flies process contextual cues, focusing on the social environment, to guide their behavioural response to a threat. We have identified a social safety cue, resumption of activity, and visual projection neurons involved in processing this cue. Given the knowledge regarding sensory detection of looming threats and descending neuron involved in the expression of freezing, we are now in a unique position to understand how information about a threat is integrated with cues from the social environment to guide the choice of whether to freeze.
Molecular controls over corticospinal neuron axon branching at specific spinal segments
Corticospinal neurons (CSN) are the cortical projection neurons that innervate the spinal cord and some brainstem targets with segmental precision to control voluntary movement of specific functional motor groups, limb sections, or individual digits, yet molecular regulation over CSN segmental target specificity is essentially unknown. CSN subpopulations exhibit striking axon targeting specificity from development into maturity: Evolutionarily newer rostrolateral CSN exclusively innervate bulbar-cervical targets (CSNBC-lat), while evolutionarily older caudomedial CSN (CSNmed) are more heterogeneous, with distinct subpopulations extending axons to either bulbar-cervical or thoraco-lumbar segments. The cervical cord, with its evolutionarily enhanced precision of forelimb movement, is innervated by multiple CSN subpopulations, suggesting inter-neuronal interactions in establishing corticospinal connectivity. I identify that Lumican, previously unrecognized in axon development, controls the specificity of cervical spinal cord innervation by CSN. Remarkably, Lumican, an extracellular matrix protein expressed by CSNBC-lat, non-cell-autonomously suppresses axon collateralization in the cervical cord by CSNmed. Intersectional viral labeling and mouse genetics further identify that Lumican controls axon collateralization by multiple subpopulations in caudomedial sensorimotor cortex. These results identify inter-axonal molecular crosstalk between CSN subpopulations as a novel mechanism controlling corticospinal connectivity and competitive specificity. Further, this mechanism has potential implications for evolutionary diversification of corticospinal circuitry with finer scale precision. "" Complementing this work, to comprehensively elucidate related axon projection mechanisms functioning at tips of growing CSN axons in vivo, I am currently applying experimental and analytic approaches recently developed in my postdoc lab (Poulopoulos*, Murphy*, Nature, 2019) to quantitatively and subcellularly “map” RNA and protein molecular machinery of subtype-specific growth cones, in parallel to their parent somata, isolated directly in vivo from developing subcerebral projection neurons (SCPN; the broader cortical output neuron population targeting both brainstem and spinal cord; includes CSN). I am investigating both normal development and GC-soma dysregulation with mutation of central CSN-SCPN transcriptional regulator Ctip2/Bcl11b.
Functional and structural loci of individuality in the Drosophila olfactory circuit
Behavior varies even among genetically identical animals raised in the same environment. However, little is known about the circuit or anatomical underpinnings of this individuality, though previous work implicates sensory periphery. Drosophila olfaction presents an ideal model to study the biological basis of behavioral individuality, because while the neural circuit underlying olfactory behavior is well-described and highly stereotyped, persistent idiosyncrasy in behavior, neural coding, and neural wiring have also been described. Projection neurons (PNs), which relay odor signals sensed by olfactory receptor neurons (ORNs) to deeper brain structures, exhibit variable calcium responses to identical odor stimuli across individuals, but how these idiosyncrasies relate to individual behavioral responses remains unknown. Here, using paired behavior and two-photon imaging measurements, we show that idiosyncratic calcium dynamics in both ORNs and PNs predict individual preferences for an aversive monomolecular odorant versus air, suggesting that variation at the periphery of the olfactory system determines individual preference for an odor’s presence. In contrast, PN, but not ORN, calcium responses predict individual preferences in a two-odor choice assay. Furthermore, paired behavior and immunohistochemistry measurements reveal that variation in ORN presynaptic density also predicts two-odor preference, suggesting this site is a locus of individuality where microscale circuit variation gives rise to idiosyncrasy in behavior. Our results demonstrate how a neural circuit may vary functionally and structurally to produce variable behavior among individuals.
Functional and structural loci of individuality in the Drosophila olfactory circuit
behaviour varies even among genetically identical animals raised in the same environment. However, little is known about the circuit or anatomical underpinnings of this individuality, though previous work implicates sensory periphery. Drosophila olfaction presents an ideal model to study the biological basis of behavioural individuality, because while the neural circuit underlying olfactory behaviour is well-described and highly stereotyped, persistent idiosyncrasy in behaviour, neural coding, and neural wiring have also been described. Projection neurons (PNs), which relay odor signals sensed by olfactory receptor neurons (ORNs) to deeper brain structures, exhibit variable calcium responses to identical odor stimuli across individuals, but how these idiosyncrasies relate to individual behavioural responses remains unknown. Here, using paired behaviour and two-photon imaging measurements, we show that idiosyncratic calcium dynamics in both ORNs and PNs predict individual preferences for an aversive monomolecular odorant versus air, suggesting that variation at the periphery of the olfactory system determines individual preference for an odor’s presence. In contrast, PN, but not ORN, calcium responses predict individual preferences in a two-odor choice assay. Furthermore, paired behaviour and immunohistochemistry measurements reveal that variation in ORN presynaptic density also predicts two-odor preference, suggesting this site is a locus of individuality where microscale circuit variation gives rise to idiosyncrasy in behaviour. Our results demonstrate how a neural circuit may vary functionally and structurally to produce variable behaviour among individuals.
Changes in striatal spiny projection neurons’ properties and circuitry in a mouse model of autism spectrum disorder with cholinergic interneuron dysfunction
FENS Forum 2024
Expression analysis of the glycine receptor subunit alpha 3 in projection neurons across brain regions
FENS Forum 2024
Glial cells undergo rapid changes following acute chemogenetic manipulation of a subpopulation of layer 5 projection neurons
FENS Forum 2024
Intrinsic excitability of anterior to posterior insula (aIC-pIC) projection neurons are differently modified following retrieval of aversive conditioning
FENS Forum 2024
Single neuron activity evolution in goal-directed learning during an operant task: Differences between direct and indirect striatal projection neurons
FENS Forum 2024
Sparse and unique functional innervation of barrel cortex onto single projection neurons in dorsal striatum and its plasticity after sensorimotor learning
FENS Forum 2024
Subcellular localization of GlyRα2 in spiny projection neurons
FENS Forum 2024
Unexpected contribution of striatal projection neurons co-expressing dopamine D1 and D2 receptors in balancing motor control
FENS Forum 2024